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Abstract

In the context of Vasicek (1987, 2002) single factmdel, we examine the impact
of skewness and excess kurtosis in the asset rptogess on the shape of the
credit loss distribution and, consequently, over Basel Il requirements. We use
Skew Normal and Skew Student'slensities to develop a Maximum Likelihood
estimator of the credit loss density for aggregditarge-off rates published by the
Federal Reserve Board for ten U.S. sectors. We sthay the non-gaussian
modelling of the common factor provides a bettearabterization than its
Gaussian counterpart, and has a significant impacthe capital requirement
depending on the sign and magnitude of the skeata@lcoefficient. On the other
hand, the non-gaussian modelling of the idiosyicractor does not provide a
significantly better characterization than the G#ars base case. The latter could
be due to the fact that the sector portfolios amyd and the idiosyncratic
component has been fully diversified away.
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Basel Il Credit Loss Distribution under Non-Normality

1. Introduction

It is a regulatory requirement that financial ingions should reserve sufficient capital
because of their exposure to credit and other.riskslst the adequacy of such reserves
is crucial for their survival as well as the sysiefiancial stability, the ongoing credit
crisis has placed a serious doubt on the way thessrves are calculated. Pillar | of
Basel Il (2004) provides the regulatory framework fdetermining bank capital
requirements for taking credit risk. Under this ukagory framework, a bank may
choose the internal ratings-based approach thiaeastirisk weights derived implicitly
from Vasicek's (1987, 2002) single factor model ¥BF In the Vasicek’s model,
changes to asset value are driven by a commonrardiasyncratic risk factors both of
which are assumed to be Gaussian. However, thes@tpbGaussianity assumption can
be a poor proxy of the true and unobservable Oigion, leading to a higher capital
charge when the right tail of the distribution isderrepresented and a lower capital
charge when the left tail is underrepresented and wersa when the right tail is
overrepresented. The latter is particularly impatres risk is not adequately covered. In
this paper we relax the Gaussianity assumptionestichate with maximum likelihood
generalized Vasicek credit loss distributions theg based on asset processes that
feature skewness and excess kurtosis. Our dat&icogaarterly charge-off rates in ten
US sectors from 1985 to 2007. Our findings provogerwhelming evidence in favour
of non-normality and leads to significantly diffatecapital charge calculation as

compared to those in Basel II.



Since the publication of Vasicek (1987), thereehbgen a number of theoretical
extensions (see Batiz, Christodoulakis and Poo@8pfbr a comprehensive survey) for
the credit loss distribution. In practice, the eoam factor is unobservable and there is
no empirical methodology available to study and tke Gaussian assumption. This
departure from Normality could exert a large impact the loan portfolio loss
distribution and, thus, the regulatory capital ¢gear (see Schonbucher (2001)). In this
paper we model and assess the impact on Vasicagitabcharges due to non-Gaussian
common or idiosyncratic factors separately. Wesatsr Skew NormalgN) and Skew
Student'st (ST) as alternatives to Gaussian. These two non-Gausdensities
encompass the normal as a special case and bahtheproperty of being analytically
tractable. Moreover, both are very flexible for totling the amount of skewness and
excess kurtosis in the distribution. THe achieves this, to a moderate degree, through a
single additional parameter. TI&, which includesSN as a limiting case, provides a
much greater flexibility over the degree of skevenaad excess kurtosis through two
additional parameters (see Azzalini (2005)), otrierNlormal.

To compare Vasicek’'s Gaussian model against taksmatives we study the
following two cases; (i) the common factor has a-@aussian distribution, and (ii) the
idiosyncratic factor has a non-Gaussian distributi¥e estimate the parameters of each
modelling choice through Maximum Likelihood. Sinceéoth non-Gaussian
specifications include Gaussian as a special aaseyse the likelihood ratio test to
assess the fit of the unrestricted (non-Gaussiaa) the restricted (Gaussian) model.
Additionally, we assess the impact of these distidmal assumptions on the capital
requirements for ten portfolios of different logmpés for the entire US Banking System.

The results show that both non-Gaussian alterrafpvevide a better fit for case (i).



Moreover, the Skew Student'specification does not provide a better fit over Ekew
Normal. We quantify the impact of the non-Gaussrardelling choices on the capital
charges and find that the degree of under(ovemnasbn depends on the sign and the
absolute value of the shape parameter estimated@kew Normal.

To our knowledge this is the first empirical pafeat develops a methodology
and examines the impact of non-Gaussianity on igtelalition of portfolio credit losses
and on capital charges. Non-Gaussian process hdsean studied before possibly due
to the fact that it is technically challenging toplement, and for the case of the Skew
Student’st distribution the estimation is computationallyensive. In particular, as
explained later in Section 4, the estimation lossribution involves the use of non-
standard quadrature functions within the optim@atioutine.

The remainder of this paper is organized as fdlo8ection 2 briefly reviews
Vasicek’s original (1987, 2002) single factor modetl the generalized version derived
by Schonbucher (2001). Section 3 discusses theéstgtat properties of the Skew
Normal and the Skew Student’'densities. Section 4 presents the estimation fnarie
which is based on maximum likelihood. Section 5Scdégs the data sets. In Section 6,
we present the estimation results and assess thcinof non-Gaussianity on capital

requirement calculation. Finally, Section 7 proged®me concluding remarks.

2. A Review of Vasicek (1987) and its Generalizatio

In this section, we first review the derivation \d&sicek’s (1987, 2002) single factor
limiting loss distribution and its underlying assuions. Then, we describe the
extensions to non-gaussian distributions made bwiSzucher (2001) which opens the

way for our empirical specifications throu@N and ST as we show later in the text.



Finally, we show how the capital requirements avenputed under the generalized
distribution.
The individual loss due to obligois defined as the product of the Exposure At Defaul
(EAD), the Loss Given Default GD) and a default indicator variablB;j as follows:

L, =EAD, xLGD, xD, (2.1)

The variableD; is a Bernoulli random variable that takes the gabme if the obligor
defaults and zero otherwise. This setup impliaggumes thd&AD; andLGD; are time

invariant for each obligot Then, the portfolio loss rate,, can be calculated as

L:#:iwixLGDixDi (2.2)
i:lEADi i=1

wherew :(EADi/zi”:lEADi) is the portfolio weight for theth loan. Vasicek (1987)

assumes that the size BAD; andLGD; are the same for all obligors, and, moreover,

that the recovery rate is equal to zero such th@b, =1. Further assumption that

EAD, = EAD leads tav =w=1/n, and a homogeneous portfolio with loss rate:

L= 22D (2.3)

n
Note that theN default random variabldd; have been treated as independent of each
other. To allow for correlation among the defaultriablesD; in (2.3), let the asset
return,R;, for obligori in the portfolio be driven by a single common &act and an

idiosyncratic noise componest:
R =\pY +|1-ps (2.4)
whereY and ¢ are assumed to be mutually and serially independertom variables

that follow a standardized Gaussian distributinio,1), andy/p and \1-p are the

®  TheLGD can be treated as a stochastic variable withcanging the model results as long as it is

assumed to be independenpf



corresponding factor loadings. Note that under spiscification, the asset returns of all
firms are multivariate Normal with the same paisve®rrelatiorp.

Vasicek (1987) assumes that the credit portfolifinis grain, i.e. it consists of a
large number of relatively small exposures. If tassumption holds, the idiosyncratic
risk associated with the individual exposures wahcel out and only systematic risks
that affect all the exposures will have an imparctlee portfolio value and loss rate.

So far the default process has been treated aseaonsg. Following Merton
(1974), Vasicek (1987) assumes that itheobligor defaults if the value of its assets,
A 1, at loan maturity, falls below the debt contratteeue, Bir. In the context of the
credit portfolio model and assuming that all obigybave the same default probability,

i.e.pd, = pd, the endogenous default process based on Mertd®934) can be
introduced ifD; is defined as:

D=1 if R<®™(pd) and D,=0 if R >®"(pd) (2.5)
where o (is the cumulative Gaussian distribution function ad is the unconditional

default probability. The default process define@in(2.5) depends on the latent random

variableY that drives the asset retuRss follows:

(v)=P(D, 1|Y y)

=P(Rs®™ |Y y)

= ( Y +\1-p & <®" (pd)‘Y:y) (2.6)
:P{g @ |Y y}

_ ol @ (pd )‘\/;EY

_q{ Vi-p J

which is the probability of default conditional @he value ofY. Conditional on the
realizationy of Y, the individual defaults happen independentlyafteother. Thus, the

unconditional probability of observing exactly defaults is the average of the



conditional probabilities ok defaults, averaged over the possible realizatodné and

weighted with the probability density functigsy):
PIX..D =k|= l P20 =kIY =y |g(y)dy
= [P0 () e}y

2.7)

Vasicek (1987) showed that if the portfolio isgey then the law of large numbers
ensures that the fraction of obligors that actud#fault is (almost surely) exactly equal
to the individual default probability. From eq.(R.¥asicek shows that the limiting loss

distribution for the homogeneous portfolio losseriat

Rl pd,p)=Pr[LS']=¢[ﬂ¢ﬂ$);_¢_l(pdq (2:8)

The loan portfolio loss distribution is fully deteined by two parameters: the
probability of default §d) and the asset correlatiop)( The former fixes the expected
loss rate of the portfolio, while the latter coérthe shape of the loss distribution. The

density of F_(I;PD, p) can be derived by using the inverse function thoand this is

equal to:

f (I; pd, p) = 1_7’0ex _(\/mqyl(;)p—qyl(pd)) +((D_12(|))2 (2.9)

Schonbucher (2001) extends the single factor esfltVasicek to cases where the
common and the idiosyncratic factors have non-Gansgistributions. In particular,

Schonbucher (2001) showed thatrif-G(JJ, and & ~H (I for all i, andY and ¢, (both

centred and standardized) are independent, thetintiteng loan loss distribution is

equal to:



e (] 210

where K is the default barrier which is given by the irseerof the asset return
distribution. Notice that this extension adds fledty and could potentially be very
important for modelling real data. However, thistemsion comes at the cost of
implementation complexities. This is because tHaudebarrierK is no longer equal to
the Gaussian inverse pél. In particular,K is now equal to the inverse of the function

that arises from the sum of the assumed distribatforY and ¢, in eq.(2.4).

According to the advanced and foundation approactiained in Basel Il, the capital
requirements are computed as the difference bettbeennexpected los8J) and the
expected lossHL) scaled by thd.GD and the effective remaining maturity. In this
paper, we omit the effect of the time to maturéed Kjersti (2005)). In the Basel I
framework, banks are expected to cover thgir on an ongoing basis, because it
represents just another cost component of the ngndusiness. Therefore, under this
methodology, capital is only needed for coveringxpected losses. Hence, banks are
required to hold capital again&tL and this corresponds to the CreditVaR of the
portfolio. The capital requirements per unit of egpre are computed in this paper as:

CR, =LGD x(UL, - EL)

A _ﬁe_l(l_”)J (2.11)
1-p

ung(
EL = pd
where UL is obtained by inverting Schonbuchers (2001) gdped limiting loss

distribution for a significance levet which, under Basel Il, is set equal to 99.9%. Note



that in eq.(2.11), the value bf5D depends on the type of loan under analysis arsd thi

value is prescribed in Basel Il

3. Specifying Non- Normality for the Generalized ¥sicek Distribution

This section presents density specifications farcfions G(JJ and H () in equation

(2.10) using the Skew Normal and the Skew Studerdsnsities. It provides a brief

account of their main properties to facilitate tmelerstanding of their application in the

context of credit loss estimation.

3.1 The Skew Normal

The Skew Normal distribution proposed by Azzalt®85, 1986) has density function:
f,(za)=2¢(z2)®(az), -cw<z<o (3.1)

where ¢{J and ®([)) are the standard normal density and cumulativenabdistribution

functions, respectively, and is the shape parameter witho <a <. With the density

function in eq.(3.1), we write ~ SN (a). In practice, we rarely work with this form of
the skew normal density. IZ ~SN(a) and W=u+0Z, where u(-ew,») is the
location parameter andr(0,) is the scale parameter, then we shall write

W ~ SN(#,0%,a) andW has density:

f,, (W,,u,a,a)zéqo(%)db(am%)), —0<W< 00, (3.2)
The Skew Normal density has four special propertfgs SN(0) is N(0,1); (ii) as
a - », f,(za) tends to the half-normal density; (iii) & is a SN(a) random
variable, then Zis a SN(-a); and (iv) f,(za) is strongly unimodal, i.elog f, (z;a)

is a concave function of.



Azzalini (1985) shows that the first four momentdle standardized Skewed Normal

random variabl& are:

E[Z]=bo (3.3)

var[Z] = 1~ (bo)* (3.4)
yl(z)=(%”)sgn(a)[%] @5)
v,(2)=2(m- 3)[%] (3.6)

whereb=./Z, d=a/\1+a’,sign(+) is a function that returns the sign of its argumen

and y,, y,denote the third and fourth standardized cumuldmgzalini (1985) shows
that, for the Skewed Normal distribution, the maxmm value of skewness is about
0.995, while that for kurtosis 0.869.

Figure 1 shows the effect of increasing the magieitof the shape parameter

value on the shape of t!&\ density. In Panel Ay, are functions ofZ, ~ SN(a;,) such

that: V, =(Zi Uy )/UZi . Therefore, it is possible to show th\agt~SN(—ﬂ L.a )

where a; [{0,4,10:w} for i=1,2,3,4 for the four cases. For increasing positive values
of a, the Skew Normal density is right skewed, the nedgbe density concentrates on
the left and the right tail will always be heaviban that of the Normal. Conversely,
Panel B shows the effect of increasing the magaitofla when ais negative. The

random variable®/ ", (i = 1234) are exactly the same &6, butV, are defined for the

4 The skewness is defined as the third standatdizement, while the kurtosis can be defined as the

fourth standardized moment. Alternatively, the skewss and the kurtosis can be defined as the third
and fourth standardized cumulants.

10



corresponding negative values. In this case, the Skew Normal densitefisdkewed,
the mass of the density concentrates on the rigghtlze right tail will always be thinner
than that of the Normal.

The Skew Normal is more flexible than the Normatdwese we can regulate the
skewness and the excess kurtosis through the gfeapenetera, albeit to a moderate
degree. Since there is only one variable, we camegtilate skewness and excess
kurtosis at the same time. In this regards, thewSkeudent'st is more flexible as

skewness and excess kurtosis are separately dedtlyl two independent parameters.

3.2 Skew Student’'s Distribution

The Skew Studentsdistributior?, ST (a,v), has density function:

v+l
fx(x;a,v):ZtV(x)Tm(aD( m] —0< X< (3.7)

where t, (0 is the density of the standard Studentdistribution withv degrees of
freedom withO<v<e; T, ([ is the distribution function of the standard Stitket-
distribution withv+1 degrees of freedom amris the shape parameter with<a <.

If X~ST(a,v) and M =pu+0X, where y0(-»,») is the location parameter and

o0(0,») is the scale parameter, theh~ ST (,0%,a,v) andM has density:

aEQM) v+l , —w<m<o (3.8)

g v+l

fu (Mu,0.a,v)= Z%tv (M)T

The Skew Student's density has six special properties: Sfi)\0,v) is the

standard Studentisdistribution T

v+l

(x); (i) as v — =, the Skewed Studentts density

> Branco and Dey (2001) provide the original sfiesiion. The notations here follow those of

Azzalini and Capitanio (2003). See Kjersti (200&) & survey of differerT specifications.
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converges to the skew-normal density; (iii) df=0and v - «, thenX is a N(0,1)

random variable; (iv) ag — o, the Skew Studentstends to the foldetdistribution;
(v) if X is a ST(a,v) random variable, thenX-is a ST(-a,v); (vi) if v=1, then the
Skewed Student’s-density becomes a Skew-Cauchy density. Azzalini @apitanio

(2003) provide expressions for the standardized emisnof a Skewed Studentts

random variableX:

E[X]=cd, forv>1 (3.9)
Var[X]= (VV_ZZ) -(co), forv>2 (3.10)
K(x)zgc[(3v__§)—%u(o*c)zJ(v%z—(o’c)zj2, for v> 3 (3.11)

y(X) :{(V_ 37 A& V3-5) +6(d:)2v_3( &)4J(L _(&)ZT -3 fav>43.12)

2)(v-4 v-3 V-2 v-2

where c=[(v/7)r((v-1)/2)/r(v2 and d=a/1+a®. The appealing modelling
advantage of the Skew Student’ss that it allows the tail thickness to be corgdl
separately via the degrees of freedom parametefhe most important theoretical
difference between th8T and theSN is that the former has no restriction on the range
of values for skewness and kurtosis (see Azza&2id09p, pp.180)).

Figure 2 shows the shape of foHF densities for the same shape parameter

value (i.e.a = 9) and for different degrees of freedom paramekies. The variabl®

is a function of the random variablg, ~ ST (a,v,), such that:R =(X -4, )/, for
i0{1,2,34. It is possible to show thatP~ST(-x, /o, Yo, av,) where

v, [0{3,5,309} for the four cases. As the degrees of freedomnpetex increases, ti&

12



converges to th&N. In fact, whernv=30, the shape of th&l density approximates that
of SN. Since the four densities are positively skewdnd tight tail will always be

heavier than that of Normal. Moreover, the tailghod ST will always be heavier than
that of SN for any givernor .

In summary, to model the non-Gaussianity of themon and the idiosyncratic
factors density, it is useful if the density hae fbllowing three properties: (i) “strict
inclusion” of the normal density; (i) mathematical tractépiland (iii) cover a wide
range of skewness and kurtosis values. The Skewnalodensity fulfils the first two
requirements in having some tractability, and imptageng skewness and kurtosis
through its shape parameter. The Skew Studémé&nsity fulfils the second and third
properties and has a great control over the skesvard kurtosis range through the

shape and the degrees of freedom parameters.

4. Maximum Likelihood Estimation

The parameters of Schonbucher's (2001) generallped density can be
estimated using maximum likelihood. The estimatisrbased on observed portfolio
default rates. Following Dullmann and Trapp (20@4@,assume that the systematic and
idiosyncratic risk factors have no autocorrelatidhe generalized probability density

for the observed default ratkss given by:

£ (1,:0)= aFLa(ll:;e)
_[1-p [K—J_—pH—l(lt)I L } (3.13)
g Jo (h(H7())

A density will strictly include the normal dengiif for a particular value of one or more of its
parameters we obtain the normal specification. Asitg will not have the strict inclusion properfy i
the normal density results as one or more of itarpaters tend to the limit.

13



where g(0Jiis the density for the common factor age:5*; h([J is the density of the

idiosyncratic factor anmza';—f‘); 0is the vector of parameters aidis the default

barrier which is given by the inverse function bktasset return distribution as a
function of 0.

The objective is to maximize the following constied log-likelihood function:

m9x|nL(e;|l,...1T)=zT; I(f.(01,)) (3.14)

t=1
The 6 set may contain additional parameters dependirth@wehoice forg([) and h(0).
Diillmann and Trapp (2004) show that for the Vasi@87) loss densit{, the value of

the parameters(pd”‘,,o”‘) that maximize eq.(3.14) has a closed form solution

Therefore, the maximization problem can be solvedlyically. Moreover, for this
Gaussian case, Dillmann and Trapp (2004) derivdosed-form solution of the
asymptotic Cramer-Rao lower bounds for the standawihtion of the estimators.

The main challenge in introducing non-Gaussiarstythe computation of the
default barrier, which is equal to the inverse tiorc of the asset return distribution.
Compared with the Skew Student,ghe Skew Normal case is a relatively manageable
task. We collect our analytical results for the Bkiormal case in the following
proposition.

Proposition:

For an asset return process of the form
R =./pY +1- pg, (3.15)

(a) if Y~SN(a)andg ~N(0,1), then

" Vasicek (1987) assumes tlgéf) and h(.) are both standard normal densities.

14



R - SN{"—B’J (3.16)
(b) if Y~N(0,)andg ~N(a), then

B J1-p &
R ~SN [—r pp J (3.17)

Proof: Using the method of moment generating functiomscan show, for any real

numbera andb, that the proposal stated by Azzalini (2005) is

au +bz ba
— N 3.18
Va? +b? [\/a2(1+a2)+b2] 519

whereU ~N(0,1), Z~SN(a), andU andZ are mutually independent. Then, defining

a=\1-p, b=./p, we obtain result in eq.(3.16). Also, definirg=./p, b=1-p,we
obtain result in eq.(3.17).

To approximate the value of the default barKer.e. thepd-quantile of the asset
return distribution given in eq.(3.16) and eq.(3,1Wwe use the Cornish Fisher
Expansion (see Cornish and Fischer (1960)).

For the Skew Student's case, the default barrier does complicate the
computation considerably. This is because theibigton followed by the sum of a
Gaussian and a Skew Studeritis not known. Here, we compute the distributioa vi
numerical quadrature (for a review on this topee $Sander and Gautschi (2000) or
Moler (2004)). Then, one can compute the quanglenmimizing the distance between

the approximated distribution at a given probapil@vel, FR(k)and the corresponding

pd value.

15



We analyze the case wheYe- ST (a,v)and & ~N(0,]) to illustrate how this
approach works. First, rewrite the SFM RasC+D,, where C=.,/p[Yand
D, =\1-p&. Next, given thatY~sST(0,1ayv), we have C~ST(0,p,av) and
D, ~ N(0,1- p) for alli. Third, sinceR; is the sum of two independent random variables,

then the convolutiorf; Of, of f and f; is the function given by:

fr (r)

fe (c) Ofy (d;)
f(c) O, (1 <)

_[, fe(c) fo, (r —c)de (3.19)

Note that once we have integrated eq.(3.19), we rgbtof ¢, and the remaining

expression for the density is a functionrpfFinally, the distribution function oR can

be obtained by integrating eq.(3.19) wras follows:

Fr (k) =P[R <k] =_Jk; fr (1)l

. (3.20)
=I I f(c)x f, (r, —c)dcar
Now, combine the two steps, where
() t2 2 [ ¢ c v+1 1 ‘%[Jrl_—cf
F.o(K)=| | —=t,| = |T.u| | — e V) ldcdr (3.21)
W= T B (9] 5 | o7l

We use an adaptive Simpson quadrature to numerieatluate the double integral.
The Simpson quadrature was computed such thaproapnates the integral to within
an error of 18. To compute th@d-quantile, we simply solve the following nonlinear

problem wrtk:

16



Fe (k) - pd=0 (3.22)
The tolerance level was set equal té.1all computations were performed in

Matlab.

5. The Federal Reserve Aggregate Loss Data

Our data sample consists of quarterly sector agdeecharge-off rates (not seasonally
adjusted) for all US commercial banks starting fr@dx1985 to Q3:2007. The charge-
off rates are published by the Federal Reservedoara quarterly basis. The charge-
off rates for any category of loan are definedles ftow of a bank’s net charge-offs
(gross charge-offs minus recoveries) during a g@ualitvided by the average level of its
loans outstanding in that quarfeThe charge-off series is reported at three agtgega
levels. At the top level, we have the ‘CommerciainBing System’ which consists of
‘Business’,'Consumer’, ‘Loans Secured by Real Estate’, ‘Agitigtal’ and ‘Leases’.
The ‘Consumer loans’, in turn, consists of ‘Cre@érds’ and ‘Other Consumer loans’,
while the ‘Loans Secured by Real Estate’ consi$tdMortgages® and ‘Commercial
Real Estate'® Since the charge-off rates are net of recoverieistwcan be from any
period in the past, charge-off rates can sometime megative or zero valu€sThis
happens whenever the recovery amount for a quiartgreater than or equal to gross

charge-off of that quarter. We replace all non-fpesicharge-off rates by the series

As published, these ratios are multiplied by 4xid®convert to annual percentage rates.

Mortgage loans include loans secured by one-io-family properties, including home equity lines
of credit.

Commercial real estate loans include constructind land development loans, loans secured by
multifamily residences, and loans secured by nomfaron-residential real estate. The data for the
Mortgage and Commercial Real Estate are availabha £21:1991.

There are other problems associated with theofibanks’ charge-off rates. As Lamb and Perraudin
(2006) noted, when a new manager takes over aiaivisf a bank, he or she may wish to write off
delinquent and semi-delinquent loans in order toab& to demonstrate a better performance
subsequently. Nevertheless, following Lamb and&elin’s (2006), we assume that the aggregation
of many banks charge-offs will help to remove anggible bias due to such actions.

10

11

17



minimum positive historical value. Following LamihcaPerraudin (2006), we scaled

the series by(1/LGD). This is because the charge-off rates are pullishet of

recoveries. The respectiveGD for each loan portfolio was taken from Basel
Committee on Banking Supervision (2004).

The time series plots of the ten charge-off ratgeseare shown in Figure 3.
Panel A shows the relationship between the scdtedge-off rate for the ‘Banking
System’ and its main sectors; Panel B and C shevGlonsumer’ and ‘Real Estate’
sectors with their respective sub-components wRigmel D shows the non-scaled
‘Banking System’ and its constituent sectors. Irbl€al we present some descriptive

statistics for the scaled (H§/LGD)) and non-scaled charge-off rate series.

Given the scale of the sub-prime financial crisssme readers might be
surprised by the relatively low level of the reatage charge-off series. The observed
levels are relatively low because the sub-primsiris largerly related to financial
instruments (i.e. CDO’s) that do not form part le¢ bank’s balance sheet. Moreover, it
is not likely to detect signs of deterioration hetbanking system from our historical
data set since it will take some time before thet lbans are charge-off from the system.

From the time series plot of the charge-off ratd-igure 3, Panel A, one can
observe that the ‘Banking System’ series remaiablsteven though there is a clear
deterioration in ‘Business’ and ‘Lease’ that stantsl999. Moreover, the ‘Consumer’
series exhibits high levels of charge off compati@all the other series. Since only
‘Banking System’ and ‘Loans Secured by Real Estateare the same time series
properties but not the others, it suggests thaafisosSecured by Real Estate’ must be the

largest component of ‘Banking System’. It is impmitt to note that the “Banking
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System” series is the only that was not scaled HeyLtGD. The unscaled series is
presented in Panel D.

Table 1 reports in its first two rows the uncorwhtl mean and standard
deviations of the unscaled loss rates. This tableiseful for comparing the entire
‘Banking System’ against its subcomponents. Théetadveals that ‘Credit Cards’ has
the highest loss rate at 2.16% which is more trarbks that of the ‘Banking System’
(0.84%). By contrast, ‘Mortgages’ exhibit a smak$ rate of just 0.15%.

‘Agricultural’ loans have the highest volatility .6%), measured as the
standard deviation of the series, and this reptesgproximately three times that of the
‘Banking System’ (0.36%). This is not too surprgsigiven the high levels of loss rate
in the ‘Agricultural’ sector at the beginning ofetlsample period. Volatility of the other
series, eg ‘Credit Cards’ (1.02%), ‘Commercial Réaltate’ (0.71%), ‘Consumer’
(0.58%) and ‘Business’ (0.56%), is relatively higbmpared with the entire ‘Banking
System’. ‘Mortgages’ has the lowest volatility (%), much smaller than the volatility
of the other series. Overall, the statistic suggdisat ‘Mortgages’ is less risky, and
‘Credit Cards’ Loans are most risky. Neverthelessremarked by Lamb and Perraudin
(2006), a more important aspect of the riskinesa tdan type is its asset correlation
within the sector. This and other sources of ridklve analyzed in the next section.

Since we estimate the model for the scaled seriesimportant to study the
skewness and kurtosis of the scaled series thaepogted in the bottom panel of Table
1. Note that the mean and standard deviation fersitaled ‘Consumer’ series, the
‘Credit Card loan’ in particular, are much highban the other series. This is partly

because theGD set by Basel Il for these sectors is also higher.
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6. Empirical Results on US Credit Portfolio Losses

In this section we report the parameter estimaie/asicek’s (1987) Gaussian
case for the ten sets of observed charge-off rateen, we show the results for the case
where the common factor follows a Skew Normal dkew Student’s-distribution.
We assess the fit of these non-Gaussian modeletoliserved charge-off rates and
compare them against that of the Gaussian casesdMer, we also compare the fit of
the ST against that of th&N, and compare the impact of these two alternatwe- n
Gaussian specifications on capital charges. Finale/ repeat the analysis for the case

where the idiosyncratic factor is eithaX or ST distributed.

6.1  The Vasicek’s (1987) Gaussian Model

The estimation results of the base case Vasicelkemeith Gaussian common
and idiosyncratic risk factors are presented inld&b This model assumes that itk
the probability of default, and, the correlation between the asset returns ofpaimyof
firms, are constant for all firms and across afidiperiods.

The pd parameter is an estimator of the expected chdfgete. Therefore, its
value is close to the mean reported in the bottarmepof Table 1. Credit cards (6.5%),
Consumer Loans (3.32%), Business Loans (1.88%)Cthdr Consumer (1.56%) have
the highest estimated default probabilities.

The correlation parametep determines the shape of the loss density, and
consequently, its quantiles. The square rogb ofieasures the correlation between the
asset return and the single common factor. Theehititep , the stronger is the sector’s
exposure to fluctuations in the common factor whiglbelieved to be driven by the

business cycle. According to Table 2for Commercial Real Estate Loans (28.37%),
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Agricultural Loans (16.61%), Loans Secured by REstate (11.11%), Business
(8.31%) and Leases (6.74%) are among the highggesting that these sectors are the
most sensitive to changes in the economic conditidil these portfolios have a higher
© when compared to that of the ‘Banking System’ 7120). Note that ‘Business’ is the
only portfolio that appears in the higld and highp group, whereas none of the three
consumption series has highis. This result is not too surprising given thae th
consumer portfolios typically represented by a éargimber of small heterogenous
loans, whereas the ‘Business’ portfolios tendsaalbminated by a smaller number of
large loans.

Under some regularity conditions (see Greene (2@ppQ0127)), the maximum
likelihood estimator follows an asymptotic Gaussidistribution. The asymptotic
standard deviation of the ML parameters can benastid with: (i) the inverse of the
Hessian; (ii) the outer product of gradients (OP@)jch is also known as the Berndt,
Hall, Hall and Haussman estimator; and (iii) then@®sich or Quasi-Maximum-
Likelihood Estimator (see White (1982)). All threstimates are computed and reported
in Table 2 which shows that all parameters estimate significant at the 1% level
regardless of the choice of standard error estimsite also drew 1,000 bootstrap data
samples for each of the charge-off series. Thizesause thed andp parameters are
constrained to the interval [0,1] and this mights®the asymptotic distribution of the
estimates not to be Normal. However, as shown IlifeT2, the bootstrap estimator is of

the same magnitude as the asymptotic estimators.
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Table 2, Panel B reports the Jarque-Bera normaéist® if the sampling
distribution ofpd andp follows a standard normal distribution. For theeaf thepd,
the Jarque-Bera test rejected normality for thee @ds Agricultural’ and ‘Commercial
Real Estate’. Regarding, the Jarque Bera rejected normality for the casehef
‘Banking System’, ‘Business’, ‘Credit Cards’ and dgages Loans’. We can conclude
that it is not clear that the MLE will be normatlystributed for all series. Given that the
standard error for the parameter estimates is alidestical between the bootstrap and

the QMLE estimator, we will report only the QMLEastlard errors.

6.2 Non-Gaussian Common Factor

Tables 3 and 4 report the results, respectivelytfe cases where the common factor
follows a SN and aST distribution while the idiosyncratic factor foll@athe standard
Gaussian distribution. Thpd and o estimates for the Gaussian Vasicek base case
reported in Table 2 are repeated here for easernparison. From Table 3 one can see
that: (i) all pd and p parameters are statistically significant at the I&¥el; (ii) the pd
estimates are very similar to the Vasicek’s base;c@ii) thep parameters increase with
respect to the Vasicek’s base case, the increageaser whenever there is a significant
shape parametesr; (iv) the shape parameter is not statisticallyngigant for three
portfolios, viz. ‘Credit Card’, ‘Other Consumer’ @rlCommercial Real Estate’, and this
suggests that th&N specification does not provide a significantlyteefit than that of
the Gaussian case for these three portfolios; @Qative shape parameters were
observed for ‘Loans Secured by Real Estate’ (-9'Mprtgages’ (-7.6), ‘Banking

System’ (-3.2) and ‘Agricultural Loans’ (-2.9); Jvithe corresponding skewness

12 We also performed Lilliefors normality tests fmt andp, but we omitted the results given that these

were similar to the Jarque Bera.
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coefficients for the sectors listed in (v), as shawTable 3, are -0.95, -0.92, -0.70 and -
0.7, respectively.

Since theSN distribution contains the normal as a particul#se; we can assess
the fit of Y~S\(a) against that o¥~N(0,1) with the log-likelihood ratio tesLR). Table
3 shows that theR test is significant at the 10% level for 7 outteh series (‘Banking
System’, ‘Business’, ‘Consumer’, ‘Loans Secured Byal Estate’, ‘Mortgages’,
‘Agricultural’ and ‘Leases’). Note that the threerigs for which theSN does not
provide a better fit are also the ones that didhete a statistically significant shape
parameter.

Figure 4 plots the distribution of charge-off matéitted under Vasicek’s
Gaussian density and that of tB&(a@) common factor against the historical observed
rates. It is clear that th&8N(a) provides a marked improvement in the fit espécial

cases whergn| is large.

Regarding theST results shown in Table 4, we provide the following
observations: (i) the magnitudes of & o and a parameters are almost identical to
those for theSN case, except for ‘Agricultural loans’; (ii) thersa three portfolios that
did not have a significant shape parameter irSiease remain insignificant under the
ST (viz. ‘Credit Card’, ‘Other Consumer’, ‘CommercidReal Estate’); (iii) the
relationship reported in point (iii) of tHaN case betweenr andp also holds here for the
ST ; (iv) the estimated degrees of freedom parameitervery large in all sectors except
for the agricultural series.

Regarding the fit of th&T, we can clearly see from thdR listed at the bottom
of Table 4 that: (i) th&T provides a better fit than Vasicek’s Gaussianradteve for

exactly the same sectors wh& also provided a better fit; (ii) tHel does not provide
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a statistically better fit than tH8N. This result corresponds to the large estimatéaega
for v and the fact that th®T collapses t@N asv - «. The only exception to point (ii)

is the ‘Agricultural Loan’ portfolio, where the a@statedv is 7.3033.

6.3 Non-Gaussian Idiosyncratic Noise

The results in Tables 5 and 6 show the parametenass for the case where the
idiosyncratic factor isSN and ST distributed, respectively, while the common fadsor
normally distributed. The log-likelihood ratio shewhat in none of the ten series, the
non-Gaussian alternative for the idiosyncratic dagbrovides a better fit than the

Normal distribution.

6.4 Impact on Capital Charge

Table 7 compares the capital charge per unit ofosxge for the cases where the
common factor is Gaussia8I\ or ST. Note that the capital charges for B¢ and the
ST cases are higher for negative shape parametees/dliz. ‘Commercial Banking
System’, ‘Loans Secured by Real Estate’, ‘Mortgagesl ‘Agricultural Loans’), and
lower for positive shape parameter (viz. ‘Businkess’, Consumer loan’, ‘Credit Card’,
‘Other Consumer loan’, ‘Commercial Real Estate’ dhdase’). The difference in
capital charge estimates becomes smaller the dloseshape parameter is to zero. Note
that the skewness has a large impact on the caphitages. For example, the capital
requirement for ‘Real Estate’ is more than doubidar SN than under Gaussian. It is
clear that higher negative skewness in asset ietaaus to higher capital requirements.
For the case of th&N, the estimated skewness is close to the maximumsadble

skewness o8N, which corresponds to roughly double the capigjuirements. It is
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important to recall that as the degrees of freedamameter tends to infinite, then t8E
converges to th&N. Thus, lower estimates for the degrees of freedarameter lead to
higher capital requirements. The only portfolio twia small degrees of freedom
parameter estimate is ‘Agricultural Loans’. In tharticular case, the estimated degrees
of freedom parameter is 7.3 (see Table 4) andetkpdains the difference between the
capital requirement for th€ common factor (0.09) and that of t&d (0.05).

The last two panels of Table 7 show that the chpaiguirements under theN
and theST idiosyncratic noise assumption are similar andndo differ significantly
form those of the Vasicek Gaussian assumption. fEsiglt might be due to the fact that
within each portfolio, the idiosyncratic risk is Meliversified, and there is no
significant exposure to idiosyncratic risk assaamilawith individual exposures. This is
plausible since our data represent large portfoldesvertheless, this result should be
taken with care. If we were to repeat this exerasethe loan portfolio of small or

medium sized commercial banks, then the resultl@donclusion might change.

7. Concluding Remarks

Vasicek (1987, 2002) derive a limiting loan poridoloss distribution which is founded
on a stochastic asset return process that is dbyea common and an idiosyncratic
factor both of which are Gaussian. Schénbucher (p@8tends the Vasicek model to
include cases where the common and the idiosyacfattors are non-Gaussian.
Despite its analytical tractability and the rickedhetical insights which have heavily
influenced Basel Il, the literature lacks directpaneal support.

In this paper, we have developed a methodologgddel empirically the impact

of non-Gaussian risk factors on credit loss distitns and capital charge. We allow
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the underlying common and idiosyncratic factorsbeo Skewed Normal and Skewed
Student’st individually. The main interest of using non-Gaasasdistributions is to
control for the effect of the asset return skewraggbexcess kurtosis on the shape of the
loss distriburion. The maximum likelihood of our dels require further analytical
results of functions of non-Normal variables whialas then performed to official
charge-off rates published by the Federal Resenagdfor ten U.S. sector charge-off
rates.

The main finding of our paper is that non-Gaussmadelling provides a
significantly improved fit in the loss density feeven out of the ten portfolios analyzed.
The most conclusive finding is that the common dachould be best modelled as
Skewed Normal. Allowing the common factor to be \B&d Student'st or the
idiosyncratic factor to be non-Gaussian, does naivigde noticeably significant
improvement to the empirical fit.

Our findings confirm that non-Gaussian modellifigh@ common factor is very
important, and highlight the inadequacy of the txgsBasel Il framework. The capital
requirements obtained by assuming a Gaussianhiistn for the asset return could
over-or underestimate the capital requirementss @egree of over-or underestimation
depends on the sign and the magnitude of the slkaranpeter of the Skew Normal.
Large negative skew parameter value leads to aerastimated capital requirement,
while large positive skew parameter leads to amestgnation.

The non-Gaussian modelling of the idiosyncratictda did not produce any
insignificant impact possibly because the ten secdnalyzed here are large portfolios,
and the idiosyncratic risks might have already besarcelled out. Due diligence should

be observed when the loan portfolio is small orwell diversified.
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Our empirical evidence suggests that Skew Normahiadequate representation
of the distributional properties of the latent coamfactor, since the estimated degrees
of freedom for the Skew Studentslistribution takes very high values, approaching a
Skew Normal. However, we propose using Skew Stisléends a modelling choice
because this distribution adds extra flexibilitydalmas the potential to accommodate
both heavy tails and skewness, which might proeduli$or modelling the losses due to

the credit crisis when the data becomes available.
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Table 1. Descriptive statistics for sector charffeaies (not seasonally adjusted)
Published by the Federal Reserve Board for th@@&pil:1985 to Q3:2007

Commercial Business Consumer Credit Other Loans Commercial Agricultural
Banking Consumer  Secured by Real Estate Mortgagest 9 Lease
Loans Loans Card Loans

System Loans Real Estate Loanst
Charge-Off Seri€'s
Mean 0.0084 0.0084 0.0216 0.0423 0.0102 0.0034 4@.00 0.0015 0.0064 0.0049
Std. Dev. 0.0036 0.0056 0.0058 0.0102 0.0033 0.0034 0.0071 0.0007 0.0106 0.0030
Scaled Charge-Off Series by l(GD)
LGD (from Basel II) $ 0.45 0.65 0.65 0.65 0.35 0.35 0.35 0.45 0.45
Mean 0.0084 0.0186 0.0332 0.0650 0.0156 0.0097 126.0 0.0042 0.0143 0.0110
Std. Dev 0.0036 0.0124 0.0089 0.0156 0.0051 0.0096 0.0202 0.0020 0.0236 0.0067
Skewness 1.0391 0.6689 0.1049 0.4605 0.6348 1.4497 1.9341 1.8200 2.9656 0.7795
Kurtosis 3.5180 2.6329 2.3442 3.1237 3.2945 44513 5.6632 7.2608 12.0876 3.6823
No of observations 91 91 91 91 91 91 67t 67t 91 91

(a) The sector charge-off rates (not seasonally adjystes defined as the flow of a bank’s net chari§e{gross charge-offs minus recoveries) duringiarter divided by
the average level of loans outstanding in that tguar

(b) The ‘Commercial Banking System’ comprises ‘Biesis’, ‘Consumer’, ‘Secured by Real Estate’, ‘Agliiaral’ and ‘Lease’ Loans. The share of lossestfar five

sectors is not disclosed by the Fed and Baseld awt provide any value for th&D of ‘Commercial Banking System’. For simplicity, vassume that theGD for
the ‘Commercial Banking System’ is equal to 1.

() The Fed started reporting the charge-off fat¢he ‘Commercial Real Estate’ and ‘Mortgageslydinom Q1:1994.
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Table 2. Parameter estimates for Vasicek lossiloligiion of sector charge-off rates (not seasoradiysted)
Published by the Federal Reserve Board for th@@&pil:1985 to Q3:2007

Commercial Business  Consumer Credit Other Loans Commercial Agricultural
Banking Consumer Secured by Real Estate Mortgagest 9 Lease
Loans Loans Card Loans

System Loans Real Estate Loanst
PANEL A
PD 0.0084 0.0188 0.0332 0.0650 0.0156 0.0096 @.012 0.0042 0.0128 0.0113
Inv. Hessian Std Error 0.0004 0.0015 0.0010 0.0016 0.0005 0.0010 0.0027 0.0002 0.0017 0.0009
QMLE Std Error 0.0004 0.0014 0.0009 0.0016 0.0005 .0001 0.0028 0.0002 0.0022 0.0007
OPG Std Error 0.0003 0.0018 0.0011 0.0016 0.0005 001D. 0.0027 0.0002 0.0014 0.0011
Bootstrap Std Error 0.0004 0.0013 0.0009 0.0016 0Gx0 0.0010 0.0028 0.0002 0.0022 0.0007
Yo, 0.0207 0.0831 0.0155 0.0149 0.0166 0.1111 0.2837 0190. 0.1661 0.0674
Inv. Hessian Std Error 0.0030 0.0113 0.0023 0.00220.0024 0.0146 0.0351 0.0032 0.0205 0.0093
QMLE Std Error 0.0025 0.0078 0.0021 0.0020 0.0022 .0102 0.0342 0.0034 0.0242 0.0104
OPG Std Error 0.0038 0.0167 0.0026 0.0024 0.0027 0.0225 0.0362 0038. 0.0209 0.0093
Bootstrap Std Error 0.0025 0.0079 0.0020 0.0020 0220 0.0101 0.0348 0.0033 0.0237 0.0103
Log-Likelihood 396.3 282.4 299.8 251.8 355.7 335.7 247.6 336.2 .1309 331.3
PANEL B:
p JBera Statistic 2.81 3.91 33.09 22.06 7.80 2.07 1.24 17.50 0.26 51.9
p© Critical Value 5.93 5.93 5.93 5.93 5.93 5.93 5.93 5.93 5.93 5.93
PD JBera Statistic 1.20 1.47 1.57 0.97 2.04 4.26 529 5.33 53.27 1.68
PD Critical Value 5.93 5.93 5.93 5.93 5.93 5.93 35.9 5.93 5.93 5.93

T The Fed started reporting the charge-off rateHer Commercial Real Estate’ and ‘Mortgages’ ontynfr Q1:1994.
The Jarque-Bera test is a two sided goodness teffisuitable when a fully-specified null disttilon is unknown and its parameters must be estindtiee test statistic is

B= (n/6)(sz +(k—3)2/4) wheren is the sample sizs,is the sample skewness, dnid the sample kurtosis. For large sample sizestesit statistic has a chi-square distribution.

In Matlab, the Jarque-Bera test uses a table ti€alrivalues computed using Monte-Carlo simulafemsample sizes less than 2000 and significancddédetween 0.001 and

0.50. Critical values for a test are computed Igripolating into the table, using the analytic shisrare approximation only when extrapolating fogds sample sizes.
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on sector charge-off Rates (not seasonally adjugtdalished by the Federal Reserve Board for thie@&€)1:1985 to Q3:2007

Table 3. Parameter estimates for Vasicek lossildligion whereY ~ SN(a) ande¢; ~ N(0,1)

Commercial Business Consumer Credit Other Loans Commercial Agricultural
Banking Consumer  Secured by Real Estate Mortgagest g Lease
Loans Loans Card Loans

System Loans Real Estate Loanst
Base case results from Table 3:
PD 0.0084 0.0188 0.0332 0.0650 0.0156 0.0096 @.012 0.0042 0.0128 0.0113
Yo, 0.0207 0.0831 0.0155 0.0149 0.0166 0.1111 0.2837 0190. 0.1661 0.0674
PD 0.0084 0.0191 0.0333 0.0650 0.0156 0.0104 0.0122 0.0042 0.0137 0.0111
QMLE Std Error 0.0004 0.0012 0.0009 0.0016 0.0005 .00838 0.0028 0.0002 0.0025 0.0007
Yo, 0.0496 0.2007 0.0377 0.0155 0.0215 0.2722 0.2837 052Q. 0.3074 0.1564
QMLE Std Error 0.0078 0.0245 0.0067 0.0142 0.0124 .0281 0.0342 0.0096 0.0464 0.0266
a -3.2535 4.3759 3.2299 0.2664 0.7597 -9.5118 0.0176 -7.5864 -2.9389 4.1673
QMLE Std Error 1.0840 1.7034 1.2925 2.9647 1.1602 .78&4 0.0198 3.8098 0.6606 2.3698
Log-Likelihood 398.8 284.1 301.9 251.8 355.7 341.9 247.6 341.3 315.0 336.0
Log-Lik Vasicek 396.3 282.4 299.8 251.8 355.7 335.7 247.6 336.2 309.1 331.3
LR ratio 49 3.5 4.2 0.0 0.1 12.4 0.0 10.1 11.8 9.4
p-value 0.0264 0.0607 0.0404 0.9812 0.8100 0.0004 0.9999 0.001% 0.0008 0.0021
CF Skewness -0.7037 0.8137 0.7005 0.0040 0.0718 -0.9515 0.0000 -0.9279 -0.6573 0.7982
CF Exc. Kurtosis 0.5475 0.6645 0.5442 0.0005 0.0261 0.8186 0.0000  7910. 0.4999 0.6477

Notes:

t The Fed started reporting the charge-off ratélferCommercial Real Estate’ and ‘Mortgages’ oinbm Q1:1994.
CF refers to the Common Factor
‘#' indicates cases where the skew normal provadsgnificant better fit than the normal at the Ed4el.
* indicates cases where the skew normal provigegynificant better fit than the normal at the &4el.
‘+’ indicates cases where the skew normal provalsgnificant better fit than the normal at the 11@el.
Given that the results by using different estimagme similar, we report only the inference basethe QMLE standard error.
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Table 4. Parameter estimates for portfolio losgibigion whereY ~ Skew—t (0,1,a ,DF) and £~ N(O,l)

on sector charge-off rates (not seasonally adjustgolished by the Federal Reserve Board for thiogeé)1:1985 to Q3:2007

Commercial Business Consumer Credit Other Loans Commercial Agricultural
Banking Consumer  Secured by Real Estate Mortgagest 9 Lease
Loans Loans Card Loans

System Loans Real Estate Loanst
Vasicek Gaussian base case results from Table 2:
PD 0.0084 0.0188 0.0332 0.0650 0.0156 0.0096 @.012 0.0042 0.0128 0.0113
0 0.0207 0.0831 0.0155 0.0149 0.0166 0.1111 0.2837 0190. 0.1661 0.0674
Results for the Skew Normal common factor from €&l
PD 0.0084 0.0191 0.0333 0.0650 0.0156 0.0104 0.0122 0044. 0.0137 0.0111
1% 0.0496 0.2007 0.0377 0.0155 0.0215 0.2722 0.2837 0520. 0.3074 0.1564
o -3.2535 4.3759 3.2299 0.2664 0.7597 -9.5118 0.0176 -7.5864 -2.9389 4.1673
PD 0.00844 0.0191 0.0333 0.0650 0.0156 0.0104 0.013 0.0042 0.0145 0.0111
QMLE Std Error 0.00037 0.0012 0.0009 0.0016 0.0005 0.0013 0.0029 0.0002 0.0027 0.0006
0 0.04957 0.2006 0.0376 0.0150 0.0214 0.2721 0.3547 .052Q 0.2150 0.1496
QMLE Std Error 0.00774 0.0202 0.0062 0.0020 0.0125 0.0231 0.0828 0.0096 0.1283 0.0268
o -3.25007 4.3744 3.2278 0.1127 0.7550 -9.5100 -h019 -7.5848 -2.0343 4.1390
QMLE Std Error 1.06705 1.0742 1.1360 0.0339 1.1745 0.5069 0.9314 3.8522 1.2285 2.5810
DF 1607 3694 2270 2689 1010 4092 33.5455 1995 3.303 43.6796
QMLE Std Error 21.8575 5.2737 635.74 14.4795 188697 97.9466 0.9967 32.6412 7.7082 0.1940
Log-Likelihood 398.8 284.1 301.9 251.8 355.7 341.9 247.7 341.3 315.3 336.0
Log-Lik Vasicek 396.3 282.4 299.8 251.8 355.7 335.7 247.6 336.2 309.1 331.3
LR ratio 4.9 3.5 4.2 0.0 0.01 12.4 0.2 10.1 12.5 5 0.
p-value 0.0263* 0.0602  0.0403* 0.9445 0.8091 0.0004 0.6979 0.001% 0.0003 0.002%
Log-Lik Y~SN(a) 398.8 284.1 301.9 251.8 355.7 341.9 247.6 341.3 .0315 336.0
LR ratio 0.014 0.0106 0.0087 0.0054 0.0137 0.0089 .15@r 0.0063 0.6728 0.0493
p-value 0.9058 0.9181 0.9259 0.9414 0.9067 0.9247 .6970 0.9367 0.4121 0.8243
Notes

‘#, * and '+’ indicate cases where the skew nahprovides a significant better fit than the nokadathe 1% level, 5% level and 10% level, respetii.

T The Fed started reporting the charge-off ratélferCommercial Real Estate’ and ‘Mortgages’ omynfi Q1:1994.
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Table 5. Parameter estimates for Vasicek lossiligion whereY ~ N(O,l) ande¢; ~ SN(a)
on sector charge-off rates (not seasonally adjustéolished by the Federal Reserve Board for thioge&)1:1985 to Q3:2007

Commercial Other Loans Commercial

Banking Business  Consumer  Credit Consumer  Secured by Real Estate Mortgagest Agricultural Lease

Loans Loans Card Loans

System Loans Real Estate Loanst

Base case results from Table 3:
PD 0.0084 0.0188 0.0332 0.0650 0.0156 0.0096 @.012 0.0042 0.0128 0.0113
0 0.0207 0.0831 0.0155 0.0149 0.0166 0.1111 0.2837  0190. 0.1661 0.0674
PD 0.0084 0.0188 0.0332 0.0650 0.0156 0.0096 0.0124 0.0042 0.0127 0.0113
QMLE Std Error 0.0004 0.0014 0.0009 0.0016 0.0005 .0001 0.0027 0.0002 0.0022 0.0007
o) 0.0177 0.0826 0.0155 0.0069 0.0139 0.0967 0.2571 0190. 0.1427 0.0674
QMLE Std Error 0.0022 0.0077 0.0021 0.0461 0.0019 .0090 0.0373 0.0034 0.0209 0.0104
a -1.000 0.095 0.000 1.350 -1.850 -1.148 -0.865 0.014 -1.929 -0.012
QMLE Std Error 0.0090 0.0360 0.0000 9.2810 0.1780 .2200 0.5220 0.0040 0.2670 0.0020
Log-Likelihood 396.4 282.4 299.8 251.8 355.7 335.8 247.7 336.3 309.97 331.3
Log-Lik Vasicek 396.3 282.4 299.8 251.8 355.7 335.7 247.6 336.2 309.1 331.3
LR ratio 0.2044 0.0003 0.0000 0.0077 0.0599 0.3312 0.0751 0.0000 1.7522 0.0000
p-value 0.6512 0.9857 0.9996 0.9299 0.8065 0.5649  .7840 0.9991 0.1854 0.9988

T The Fed started reporting the charge-off rateétferCommercial Real Estate’ and ‘Mortgages’ ontyni Q1:1994.
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Table 6. Parameter estimates for Vasicek lossldligion whereY ~ N(O,l) and £~ Ske\N—t(O,l a, DF)
on sector charge-off rates (not seasonally adjustgolished by the Federal Reserve Board for thioge&)1:1985 to Q3:2007

Commercial Business Consumer Credit Other Loans Commercial Agricultural
Banking Consumer  Secured by Real Estate Mortgagest 9 Lease
Loans Loans Card Loans

System Loans Real Estate Loanst
Base case results from Table 3:
PD 0.0084 0.0188 0.0332 0.0650 0.0156 0.0096 @.012 0.0042 0.0128 0.0113
0 0.0207 0.0831 0.0155 0.0149 0.0166 0.1111 0.2837 0190. 0.1661 0.0674
PD 0.0084 0.0188 0.0332 0.0650 0.0156 0.0096 0.0124 0.0042 0.0117 0.0113
QMLE Std Error 0.0001 0.0001 0.0009 0.0025 0.0009 .0005 0.0034 0.0001 0.0011 0.0001
o) 0.0156 0.0846 0.0167 0.0078 0.0123 0.0969 0.2578 0196. 0.1589 0.0567
QMLE Std Error 0.0022 0.0077 0.0021 0.0461 0.0019 .0090 0.0373 0.0034 0.0209 0.0104
a -1.011 0.0961 0.0000 1.3708 -1.898 -1.1476 -0.8698 0.01434 -1.9225 -0.0131
QMLE Std Error 0.0012 0.0261 0.0000 10.2810 0.1780 0.2200 0.5220 0.0040 0.2670 0.0020
DF 4240 4836 8950 4230 4678 3862 4835 6110 2398 0633
QMLE Std Error 43.9 10.9 998.3 32.6 201.8 118.3 3.9 64.3 65.3 38.2
Log-Likelihood 396.4 282.4 299.8 251.8 355.7 335.8 247.7 336.3 309.9 331.3
Log-Lik Vasicek 396.3 282.4 299.8 251.8 355.7 335.7 247.6 336.2 309.1 331.3
LR ratio 0.2045 0.0003 0.0000 0.0078 0.0602 0.3322 0.0796 0.0000 1.7755 0.0000
p-value 0.6511 0.9862 0.9982 0.9296 0.8062 0.5644 T778 0.9992 0.1827 0.9984

T The Fed started reporting the charge-off ratetfer Commercial Real Estate’ and ‘Mortgages’ onmtynfi Q1:1994.
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Table 7. Capital charges for Vasicek’s (1987) srfgttor Gaussian model and the non-Gaussian afiess

Other Loans Commercial

Commercial Business Consumer Credit Agricultural
Banking System Loans Loans Card Consumer Secured by Real Estate Mortgagest Loans Lease
Loans Real Estate Loanst

LGD 1 0.45 0.65 0.65 0.65 0.35 0.35 0.35 0.45 0.45

Sig. 0.9990 0.9990 0.9990  0.9990 0.9990 0.9990 0aD.9 0.9990 0.9990 0.9990

EL 0.0084 0.0188 0.0332  0.0650 0.0156 0.0096 0.0124 0.0042 0.0127 0.0113

Vasicek UL 0.0247 0.1073 0.0718  0.1260 0.0383 0.0819 0.2376 0.0129 0.1431 0.0628
CR 0.0162 0.0398 0.0251  0.0396 0.0147 0.0253 0.0789 0.0030 0.0587 0.0232

SN shape 3.2535 4.3759 32299  0.2664 0.7597 95118 .0176 75864 2.9389 21673
EL 0.0084 0.0191 0.0333 __ 0.0650 0.0156 0.0104 0.0122 0.0042 0.0137 0.0111

Common i 0.0329 0.0630 0.0588  0.1259 0.0374 0.1657 0.2376 0.0189 0.2273 0.0354
factor  cR 0.0245 0.0198 0.0165  0.0396 0.0142 0.0543 0.0789  0050. 0.0961 0.0109
ST shape 3.2501 4.3744 32278  0.1127 0.7550 295100 1.0195 75848 2.0343 4.1390
EL 0.0084 0.0191 0.0333 __ 0.0650 0.0156 0.0104 0.0131 0.0042 0.0145 0.0111

Common i 0.0329 0.0630 0.0588  0.1260 0.0374 0.1656 0.2577 0.0189 0.1263 0.0348
factor  cRr 0.0245 0.0198 0.0165  0.0396 0.0142 0.0543 0.0856 0.0051 0.0503 0.0107
SN shape -1.0000 0.0950 0.0000  1.3500 -1.8500 -1.1480 @865  0.0140 -1.9290 -0.0120
\diosyncratic E- 0.0084 0.0188 0.0332 __ 0.0650 0.0156 0.0096 0.0124 0.0042 0.0127 0.0113
- uL 0.0249 0.1073 0.0718  0.1253 0.0387 0.0857 0.2561  0120. 0.1527 0.0628
actor g 0.0165 0.0398 0.0251  0.0392 0.0150 0.0266 0.0853 0.0030 0.0630 0.0232
- shape -1.011 0.0961 0.0000  1.3708 -1.898 -1.1476 -0.8698 0.01434 -1.9225 -0.0131
diosvncratic EL 0.0084 0.0188 0.0332 __ 0.0650 0.0156 0.0096 0.0124 0.0042 0.0127 0.0113
y uL 0.0249 0.1073 0.0718  0.1253 0.0387 0.0857 0.2561 0.0129 0.1527 0.0628
Factor 0.0165 0.0398 0.0251  0.0392 0.0150 0.0266 0.0853 0.0030 0.0630 0.0232

Notes in Table 7: shape=Estimated Shape PararidteExpected Loss, UL=Unexpected Loss, Cap.Req=@laR&quirements, SN=Skew Normal, ST=Skew Studént’s

Consistent with Basel Il, the confidence level eonpute the capital requirements is set to 99.9%s Means that an institution is expected to sudfeses that exceed its

economic capital once in a thousand years on agefrdthe Fed started reporting the charge-off @téhie ‘Commercial Real Estate’ and ‘Mortgages'yoinbm Q1:1994.
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Figure 1. Skew Normal Density

PANEL A: Skew Normal density function for positigbape values
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Table of moments for Panel A

Random Variable V; V, \A Vv,
Shapda) 0 4 10 +0
Delta (0) 0 0.9701  0.9950 1
Expected Value 0 0 0 0
Variance 1 1 1 1
Std Dev 1 1 1 1
Skewnesg, (V,) 0 0.7844 09556  0.9953
Excess Kurtosig,(V) | 0 0.6328  0.8232  0.8692

PANEL B: Skew Normal density function for negatsiegape values
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Table of moments for Panel B
Random Variable A v, A v,
Shape(a) 0 -4 -10 &0
Delta (0) 0 -0.9701  -0.9950 1
Expected Value 0 0 0 0
Variance 1 1 1 1
Std Dev 1 1 1 1
Skewnesg, (V,) 0 -0.7844  -0.9556  -0.9953
Excess Kurtosig, (V) | 0 0.6328  0.8232  0.8692




Figure 2. Skew Normal and Skew Studentiensity function for positive shape values
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Table of moments for Figure 2

Random Variable = P, P, P,
Shapda) 9 9 9 9
Degrees of freedofw) +o0 3 5 30
Delta(0) 0.9939 0.9939  0.9939 0.9939
Expected Value 0 0 0 0
Variance 1 1 1 1
Std Dev 1 1 1 1
Skewnesg;(P) 0.9556 nd 2.5029 1.0803
Excess Kurtosig,(P) 0.8232 nd 19.6611  1.3676

nd = not defined
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Figure 3. US Federal reserve board quarterly ammadhtharge-off rates for the period Q1:1985 to2Q67
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Density

Density

Figure 4. Distribution of quarterly charge-off rabeder Normal and Skew Normal common factors ag#neshistorical distribution
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Figure 4 (Continued)
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Figure 4 (Continued)

Vasicek’s loss density assumes that the assetrptacess is driven by a single Gaussian commadorfa¢asicek’s loss density depends on the value of
two parameters: the probability of defaydtl{ and the asset correlatiop)( The values for these parameters for each pmtéok taken from Table 2.
The Skew Normal common factor modelling is an aléirve to Vasicek’s Gaussian proposition that presia superior fit for seven out of ten analyzed
portfolios. The non-Gaussian density depends aetparameters: (i) the probability of defapli)( (i) the asset correlation coefficiend)( and (iii) the
shape parameten). The values of these parameters for each partéok taken from Table 3.
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