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Abstract 

In the context of Vasicek (1987, 2002) single factor model, we examine the impact 
of skewness and excess kurtosis in the asset return process on the shape of the 
credit loss distribution and, consequently, over the Basel II requirements. We use 
Skew Normal and Skew Student’s t densities to develop a Maximum Likelihood 
estimator of the credit loss density for aggregate charge-off rates published by the 
Federal Reserve Board for ten U.S. sectors. We show that, the non-gaussian 
modelling of the common factor provides a better characterization than its 
Gaussian counterpart, and has a significant impact on the capital requirement 
depending on the sign and magnitude of the skew-related coefficient. On the other 
hand, the non-gaussian modelling of the idiosyncratic factor does not provide a 
significantly better characterization than the Gaussian base case. The latter could 
be due to the fact that the sector portfolios are large and the idiosyncratic 
component has been fully diversified away. 
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Basel II Credit Loss Distribution under Non-Normality 

 

 

1. Introduction 

It is a regulatory requirement that financial institutions should reserve sufficient capital 

because of their exposure to credit and other risks. Whilst the adequacy of such reserves 

is crucial for their survival as well as the systemic financial stability, the ongoing credit 

crisis has placed a serious doubt on the way these reserves are calculated. Pillar I of 

Basel II (2004) provides the regulatory framework for determining bank capital 

requirements for taking credit risk. Under this regulatory framework, a bank may 

choose the internal ratings-based approach that utilizes risk weights derived implicitly 

from Vasicek’s (1987, 2002) single factor model (SFM). In the Vasicek’s model, 

changes to asset value are driven by a common and an idiosyncratic risk factors both of 

which are assumed to be Gaussian. However, the imposed Gaussianity assumption can 

be a poor proxy of the true and unobservable distribution, leading to a higher capital 

charge when the right tail of the distribution is underrepresented and a lower capital 

charge when the left tail is underrepresented and vice cersa when the right tail is 

overrepresented. The latter is particularly important as risk is not adequately covered. In 

this paper we relax the Gaussianity assumption and estimate with maximum likelihood 

generalized Vasicek credit loss distributions that are based on asset processes that 

feature skewness and excess kurtosis. Our data concern quarterly charge-off rates in ten 

US sectors from 1985 to 2007. Our findings provide overwhelming evidence in favour 

of non-normality and leads to significantly different capital charge calculation as 

compared to those in Basel II. 
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 Since the publication of Vasicek (1987), there have been a number of theoretical 

extensions (see Batiz, Christodoulakis and Poon (2008) for a comprehensive survey) for 

the credit loss distribution.  In practice, the common factor is unobservable and there is 

no empirical methodology available to study and test the Gaussian assumption.  This 

departure from Normality could exert a large impact on the loan portfolio loss 

distribution and, thus, the regulatory capital charges (see Schönbucher (2001)).  In this 

paper we model and assess the impact on Vasicek’s capital charges due to non-Gaussian 

common or idiosyncratic factors separately.  We consider Skew Normal (SN) and Skew 

Student’s t (ST) as alternatives to Gaussian. These two non-Gaussian densities 

encompass the normal as a special case and both have the property of being analytically 

tractable. Moreover, both are very flexible for controlling the amount of skewness and 

excess kurtosis in the distribution. The SN achieves this, to a moderate degree, through a 

single additional parameter. The ST, which includes SN as a limiting case, provides a 

much greater flexibility over the degree of skewness and excess kurtosis through two 

additional parameters (see Azzalini (2005)), over the Normal.  

 To compare Vasicek’s Gaussian model against these alternatives we study the 

following two cases; (i) the common factor has a non-Gaussian distribution, and (ii) the 

idiosyncratic factor has a non-Gaussian distribution. We estimate the parameters of each 

modelling choice through Maximum Likelihood. Since both non-Gaussian 

specifications include Gaussian as a special case, we use the likelihood ratio test to 

assess the fit of the unrestricted (non-Gaussian) over the restricted (Gaussian) model. 

Additionally, we assess the impact of these distributional assumptions on the capital 

requirements for ten portfolios of different loan types for the entire US Banking System. 

The results show that both non-Gaussian alternatives provide a better fit for case (i). 
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Moreover, the Skew Student’s t specification does not provide a better fit over the Skew 

Normal. We quantify the impact of the non-Gaussian modelling choices on the capital 

charges and find that the degree of under(over) estimation depends on the sign and the 

absolute value of the shape parameter estimate of the Skew Normal.  

To our knowledge this is the first empirical paper that develops a methodology 

and examines the impact of non-Gaussianity on the distribution of portfolio credit losses 

and on capital charges. Non-Gaussian process has not been studied before possibly due 

to the fact that it is technically challenging to implement, and for the case of the Skew 

Student’s t distribution the estimation is computationally intensive. In particular, as 

explained later in Section 4, the estimation loss distribution involves the use of non-

standard quadrature functions within the optimization routine. 

 The remainder of this paper is organized as follows. Section 2 briefly reviews 

Vasicek’s original (1987, 2002) single factor model and the generalized  version derived 

by Schönbucher (2001). Section 3 discusses the statistical properties of the Skew 

Normal and the Skew Student’s t densities. Section 4 presents the estimation framework 

which is based on maximum likelihood. Section 5 describes the data sets. In Section 6, 

we present the estimation results and assess the impact of non-Gaussianity on capital 

requirement calculation. Finally, Section 7 provides some concluding remarks.  

 

2. A Review of Vasicek (1987) and its Generalization 

In this section, we first review the derivation of Vasicek’s (1987, 2002) single factor 

limiting loss distribution and its underlying assumptions. Then, we describe the 

extensions to non-gaussian distributions made by Schönbucher (2001) which opens the 

way for our empirical specifications through SN and ST as we show later in the text. 
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Finally, we show how the capital requirements are computed under the generalized 

distribution. 

The individual loss due to obligor i is defined as the product of the Exposure At Default 

(EAD), the Loss Given Default (LGD) and a default indicator variable (Di) as follows: 

 i i i iL EAD LGD D= × ×  (2.1) 

The variable Di is a Bernoulli random variable that takes the value one if the obligor 

defaults and zero otherwise. This setup implicitly assumes that EADi and LGDi are time 

invariant for each obligor.3 Then, the portfolio loss rate, L , can be calculated as 

 1

1
1

n
n

ii
i i in

iii

L
L w LGD D

EAD
=

=
=

= = × ×∑
∑

∑
 (2.2) 

where ( )1

n

i i ii
w EAD EAD

=
= ∑  is the portfolio weight for the ith loan. Vasicek (1987) 

assumes that the size of EADi and LGDi are the same for all obligors, and, moreover, 

that the recovery rate is equal to zero such that 1=iLGD . Further assumption that 

=iEAD EAD  leads to 1/= =iw w n , and a homogeneous portfolio with loss rate: 

 1

N

ii
D

L
n
== ∑  (2.3) 

Note that the N default random variables Di have been treated as independent of each 

other. To allow for correlation among the default variables Di in (2.3), let the asset 

return, Ri,  for obligor i in the portfolio be driven by a single common factor Y and an 

idiosyncratic noise component iε :  

 1i iR Yρ ρε= + −  (2.4) 

where Y and iε are assumed to be mutually and serially independent random variables 

that follow a standardized Gaussian distribution ( )0,1N , and ρ and 1 ρ−  are the 

                                                 
3   The LGD can be treated as a stochastic variable without changing the model results as long as it is 

assumed to be independent of Di. 
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corresponding factor loadings. Note that under this specification, the asset returns of all 

firms are multivariate Normal with the same pairwise correlationρ .  

Vasicek (1987) assumes that the credit portfolio is fine grain, i.e. it consists of a 

large number of relatively small exposures. If this assumption holds, the idiosyncratic 

risk associated with the individual exposures will cancel out and only systematic risks 

that affect all the exposures will have an impact on the portfolio value and loss rate.  

So far the default process has been treated as exogenous. Following Merton 

(1974), Vasicek (1987) assumes that the ith obligor defaults if the value of its assets, 

Ai,T, at loan maturity, falls below the debt contractual value, Bi,T.  In the context of the 

credit portfolio model and assuming that all obligors have the same default probability, 

i.e. ipd pd= , the endogenous default process based on Merton’s (1974) can be 

introduced if Di is defined as: 

 ( ) ( )1 11 if and 0 ifi i i iD R pd D R pd− −= ≤ Φ = > Φ  (2.5) 

where ( )Φ ⋅ is the cumulative Gaussian distribution function and pd is the unconditional 

default probability. The default process defined in eq.(2.5) depends on the latent random 

variable Y that drives the asset returnsiR as follows: 

 

( ) ( )
( )( )

( )( )
( )

( )

1

1

1

1

1

1

1

1

i

i

i

i

p y P D Y y

P R pd Y y

P Y pd Y y

pd Y
P Y y

pd y

ρ ρ ε

ρ
ε

ρ

ρ
ρ

−

−

−

−

= = =

= ≤ Φ =

= ⋅ + − ⋅ ≤ Φ =

 Φ − ⋅
= ≤ = 

 − 

 Φ − ⋅
= Φ 

 − 

 (2.6) 

which is the probability of default conditional on the value of Y. Conditional on the 

realization y of Y, the individual defaults happen independently of each other. Thus, the 

unconditional probability of observing exactly k defaults is the average of the 
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conditional probabilities of k defaults, averaged over the possible realizations of Y and 

weighted with the probability density function ( )yφ : 

 
( )

( )( ) ( )( ) ( )

1 1

1

n n

i ii i

k n k

P D k P D k Y y y dy

n
p y p y y dy

k

φ

φ

∞

= =
−∞

∞
−

−∞

   = = = =
   

 
= − 

 

∑ ∑∫

∫
 (2.7) 

 Vasicek (1987) showed that if the portfolio is large, then the law of large numbers 

ensures that the fraction of obligors that actually default is (almost surely) exactly equal 

to the individual default probability. From eq.(2.7), Vasicek shows that the limiting loss 

distribution for the homogeneous portfolio loss rate is: 

 ( ) [ ] ( ) ( )1 11
; , PrL

l pd
F l pd L l

ρ
ρ

ρ

− − − Φ − Φ
= ≤ = Φ 

 
 

 (2.8) 

The loan portfolio loss distribution is fully determined by two parameters: the 

probability of default (pd) and the asset correlation (ρ). The former fixes the expected 

loss rate of the portfolio, while the latter controls the shape of the loss distribution. The 

density of ( ); ,LF l PD ρ  can be derived by using the inverse function theorem and this is 

equal to: 

( )
( ) ( )( ) ( )( )

2 21 1 111
; , exp

2 2L

l pd l
f l pd

ρρρ
ρ ρ

− − − − Φ − Φ Φ−  = − + 
 
 

 (2.9) 

 

Schönbucher (2001) extends the single factor results of Vasicek to cases where the 

common and the idiosyncratic factors have non-Gaussian distributions. In particular, 

Schönbucher (2001) showed that if ( )~Y G ⋅ , and ( )~i Hε ⋅  for all i, and Y and iε  (both 

centred and standardized) are independent, then the limiting loan loss distribution is 

equal to: 
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 ( ) ( )11
; , 1L

K
F l pd G H l

ρρ
ρρ

− −= − −  
 

 (2.10) 

where K  is the default barrier which is given by the inverse of the asset return 

distribution. Notice that this extension adds flexibility and could potentially be very 

important for modelling real data. However, this extension comes at the cost of 

implementation complexities. This is because the default barrier K  is no longer equal to 

the Gaussian inverse of pd. In particular, K  is now equal to the inverse of the function 

that arises from the sum of the assumed distributions for Y and iε  in eq.(2.4).    

 

According to the advanced and foundation approach contained in Basel II, the capital 

requirements are computed as the difference between the unexpected loss (UL) and the 

expected loss (EL) scaled by the LGD and the effective remaining maturity. In this 

paper, we omit the effect of the time to maturity (see Kjersti (2005)). In the Basel II 

framework, banks are expected to cover their EL on an ongoing basis, because it 

represents just another cost component of the lending business. Therefore, under this 

methodology, capital is only needed for covering unexpected losses. Hence, banks are 

required to hold capital against UL and this corresponds to the CreditVaR of the 

portfolio. The capital requirements per unit of exposure are computed in this paper as:  

 

( )
( )1 1

1

CR LGD UL EL

K G
UL H

EL pd

α α

α
ρ α

ρ

−

= × −

 − −
=  

 − 

=

 (2.11) 

where UL is obtained by inverting Schönbuchers (2001) generalized limiting loss 

distribution for a significance level α which, under Basel II, is set equal to 99.9%. Note 
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that in eq.(2.11), the value of LGD depends on the type of loan under analysis and this 

value is prescribed in Basel II. 

 

3.  Specifying Non- Normality for the Generalized Vasicek Distribution 

This section presents density specifications for functions ( )G ⋅  and ( )H ⋅  in equation 

(2.10) using the Skew Normal and the Skew Student’s t densities.  It provides a brief 

account of their main properties to facilitate the understanding of their application in the 

context of credit loss estimation. 

3.1 The Skew Normal  

The Skew Normal distribution proposed by Azzalini (1985, 1986) has density function: 

 ( ) ( ) ( ); 2 ,Zf z z z zα φ α= Φ − ∞ < < ∞  (3.1) 

where ( )⋅φ  and ( )⋅Φ  are the standard normal density and cumulative normal distribution 

functions, respectively, and α  is the shape parameter with α−∞ < < ∞ . With the density 

function in eq.(3.1), we write ( )~Z SN α . In practice, we rarely work with this form of 

the skew normal density. If ( )~Z SN α  and W Zµ σ= + , where ( ),µ ∈ −∞ ∞  is the 

location parameter and ( )0,σ ∈ ∞  is the scale parameter, then we shall write 

( )2, ,W SN µ σ α∼  and W  has density: 

 ( ) ( ) ( )( )2
; , , , ,w w

Wf w wµ µ
σ σµ σ α φ α

σ
− −= Φ ⋅ − ∞ < < ∞  (3.2) 

The Skew Normal density has four special properties: (i) ( )0SN  is ( )0,1N ; (ii) as 

∞→α , ( );Zf z α  tends to the half-normal density; (iii) if Z is a ( )SN α  random 

variable, then –Z is a ( )SN α− ; and (iv) ( );Zf z α  is strongly unimodal, i.e. ( )log ;Zf z α  

is a concave function of  z.   
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Azzalini (1985) shows that the first four moments of the standardized Skewed Normal 

random variable Z are: 

 [ ]E Z bδ=  (3.3) 

 [ ] ( )2
var 1Z bδ= −  (3.4) 

 ( ) ( ) ( ) ( ){ }
( )

3 22

1

4

2 var

E Z
Z sign

Z

π
γ α

 −
 =
 
 

 (3.5) 

 ( ) ( ) ( ){ }
( )

22

2 2 3
var

E Z
Z

Z
γ π

 
 = −
 
 

 (3.6) 

where 2 ,b π=  21 ,δ α α= + ( )sign i  is a function that returns the sign of its argument 

and 1 2,  γ γ denote the third and fourth standardized cumulants. 4 Azzalini (1985) shows 

that, for the Skewed Normal distribution, the maximum value of skewness is about 

0.995, while that for kurtosis is 0.869.  

 Figure 1 shows the effect of increasing the magnitude of the shape parameter 

value on the shape of the SN density. In Panel A, iV  are functions of ( )ii SNZ α~  such 

that: ( )
ii ZZii ZV σµ−= . Therefore, it is possible to show that ( ),,,~ 1

ii
iZiZ

iZSNV ασσ
µ−  

where { } 0,4,10,+∞∈iα for 1,2,3,4i =  for the four cases. For increasing positive values 

of α, the Skew Normal density is right skewed, the mass of the density concentrates on 

the left and the right tail will always be heavier than that of the Normal. Conversely, 

Panel B shows the effect of increasing the magnitude of α when α is negative. The 

random variables )4,3,2,1(,* =iVi  are exactly the same as iV , but *
iV are defined for the 

                                                 
4   The skewness is defined as the third standardized moment, while the kurtosis can be defined as the 

fourth standardized moment. Alternatively, the skewness and the kurtosis can be defined as the third 
and fourth standardized cumulants.  
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corresponding negative α values. In this case, the Skew Normal density is left skewed, 

the mass of the density concentrates on the right and the right tail will always be thinner 

than that of the Normal.  

The Skew Normal is more flexible than the Normal because we can regulate the 

skewness and the excess kurtosis through the shape parameter α, albeit to a moderate 

degree. Since there is only one variable, we cannot regulate skewness and excess 

kurtosis at the same time. In this regards, the Skew Student’s t is more flexible as 

skewness and excess kurtosis are separately controlled by two independent parameters.  

 

3.2 Skew Student’s t Distribution 

The Skew Student’s t-distribution5, ( ),ST vα , has density function: 

 ( ) ( ) 1 2

1
; , 2 ,X v v

v
f x v t x T x x

x v
α α+

 += ⋅ − ∞ ≤ ≤ ∞  + 
 (3.7) 

where ( )vt ⋅  is the density of the standard Student’s t-distribution with v degrees of 

freedom with 0 v< < ∞ ; ( )1vT + ⋅  is the distribution function of the standard Student’s t-

distribution with 1v +  degrees of freedom and α is the shape parameter with α−∞ < < ∞ . 

If ( )~ ,X ST vα  and M Xµ σ= + , where ( ),µ ∈ −∞ ∞  is the location parameter and 

( )0,σ ∈ ∞  is the scale parameter, then ( )2, , ,M ST vµ σ α∼  and M  has density: 

( ) ( ) ( ) ( )1 2

1 1
; , , , 2 ,m m

M v v
m

v
f m v t T m

v

µ µ
σ σ µ

σ

µ σ α α
σ

− −
+ −

 + = ⋅ − ∞ ≤ ≤ ∞
  +
 

       (3.8) 

 The Skew Student’s t density has six special properties: (i)( )0,ST v  is the 

standard Student’s t-distribution ( )1vT x+ ; (ii) as v → ∞ , the Skewed Student’s t- density 

                                                 
5   Branco and Dey (2001) provide the original specification. The notations here follow those of 

Azzalini and Capitanio (2003). See Kjersti (2006) for a survey of different ST specifications. 
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converges to the skew-normal density; (iii) if 0α = and v → ∞ , then X is a ( )0,1N  

random variable; (iv) as ∞→α , the Skew Student’s t tends to the folded-t distribution;  

(v) if X is a ( ),ST vα  random variable, then –X is a ( ),ST vα− ; (vi) if 1v = , then the 

Skewed Student’s t-density becomes a Skew-Cauchy density. Azzalini and Capitanio 

(2003) provide expressions for the standardized moments of a Skewed Student’s t 

random variable X:  

 [ ] ,  1E X c for vδ= >  (3.9) 

 [ ] ( ) ( )
2

2
,  2

2

v
Var X c for v

v
δ= − >

−
 (3.10) 

 ( ) ( ) ( ) ( )
3

2
22 2

1

3 3
2 ,  3

3 2 2

v v
X c c c for v

v v v

δ
γ δ δ δ

− −  = − + − >   − − −  
 (3.11) 

 ( ) ( )( )
( ) ( ) ( ) ( ) ( )

2 2 222
4 2

2

4 3 63
3 3,  4

2 4 3 2 2

c v c vv v
X c c for v

v v v v v

δ δ δ
γ δ δ

− −  
 = − + − − − >  − − − − −  

(3.12) 

where ( ) ( )( ) ( )1 2 2c v v vπ= Γ − Γ  and 21 .δ α α= +  The appealing modelling 

advantage of the Skew Student’s t is that it allows the tail thickness to be controlled 

separately via the degrees of freedom parameter, v. The most important theoretical 

difference between the ST and the SN is that the former has no restriction on the range 

of values for skewness and kurtosis (see Azzalini (2005, pp.180)).  

Figure 2 shows the shape of four ST densities for the same shape parameter 

value (i.e. α = 9) and for different degrees of freedom parameter values. The variable iP  

is a function of the random variable ( )~ ,i iX ST vα , such that: ( )
i ii i X XP X µ σ= −  for 

{ }1,2,3,4i ∈ . It is possible to show that ( ),~ 1 , ,
i i ii X X X iP ST vµ σ σ α−  where 

{ }3,5,30,iv ∈ ∞  for the four cases. As the degrees of freedom parameter increases, the ST 
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converges to the SN. In fact, when v=30, the shape of the ST density approximates that 

of SN. Since the four densities are positively skewed, the right tail will always be 

heavier than that of Normal. Moreover, the tails of the ST will always be heavier than 

that of SN for any givenα .  

 In summary, to model the non-Gaussianity of the common and the idiosyncratic 

factors density, it is useful if the density has the following three properties: (i) “strict 

inclusion”6 of the normal density; (ii) mathematical tractability; and (iii) cover a wide 

range of skewness and kurtosis values. The Skew Normal density fulfils the first two 

requirements in having some tractability, and in capturing skewness and kurtosis 

through its shape parameter. The Skew Student’s t-density fulfils the second and third 

properties and has a great control over the skewness and kurtosis range through the 

shape and the degrees of freedom parameters.  

 

4. Maximum Likelihood Estimation 

The parameters of Schönbucher’s (2001) generalized loss density can be 

estimated using maximum likelihood. The estimation is based on observed portfolio 

default rates. Following Düllmann and Trapp (2004), we assume that the systematic and 

idiosyncratic risk factors have no autocorrelation. The generalized probability density 

for the observed default rates lt is given by: 

 

( ) ( )

( )
( )( )

1

1

;
;

11 1

t

L t
L t

t

t

t

F l
f l

l

K H l
g

h H l

ρρ
ρ ρ

−

−

∂
=

∂

  − −−
 =  

    

θ
θ

 (3.13) 

                                                 
6  A density will strictly include the normal density if for a particular value of one or more of its 

parameters we obtain the normal specification. A density will not have the strict inclusion property if 
the normal density results as one or more of its parameters tend to the limit. 
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where ( )g ⋅ is the density for the common factor and ( )t

t

G l

lg
∂

∂= ; ( )h ⋅  is the density of the 

idiosyncratic factor and ( )t

t

H l

lh
∂

∂= ; θ is the vector of parameters and K is the default 

barrier which is given by the inverse function of the asset return distribution as a 

function of θ .  

The objective is to maximize the following constrained log-likelihood function: 

 ( ) ( )( )1
1

max ln ; ,..., ln ;
T

T L t
t

L l l f l
=

=∑
θ

θ θ  (3.14) 

The θset may contain additional parameters depending on the choice for ( )g ⋅  and ( )h ⋅ . 

Düllmann and Trapp (2004) show that for the Vasicek (1987) loss density,7  the value of 

the parameters ( ),ml mlpd ρ  that maximize eq.(3.14) has a closed form solution. 

Therefore, the maximization problem can be solved analytically. Moreover, for this 

Gaussian case, Düllmann and Trapp (2004) derive a closed-form solution of the 

asymptotic Cramer-Rao lower bounds for the standard deviation of the estimators.  

The main challenge in introducing non-Gaussianity is the computation of the 

default barrier, which is equal to the inverse function of the asset return distribution. 

Compared with the Skew Student’s t, the Skew Normal case is a relatively manageable 

task. We collect our analytical results for the Skew Normal case in the following 

proposition. 

Proposition: 

For an asset return process of the form 

 1i iR Yρ ρε= + −  (3.15) 

(a) if ( )Y SN α∼ and ( )0,1i Nε ∼ , then 

                                                 
7  Vasicek (1987) assumes that g(.)  and  h(.) are both standard normal densities. 
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( )21 1

iR SN
ρ α

α ρ

 ⋅ 
 + − 

∼  (3.16) 

(b) if ( )0,1Y N∼ and ( )i SNε α∼ , then  

 
2

1

1
iR SN

ρ α
α ρ

 − ⋅
 
 + 

∼  (3.17) 

Proof: Using the method of moment generating functions we can show, for any real 

number a and b, that the proposal stated by Azzalini (2005) is  

 
( )2 2 2 2 2

~
1

aU bZ b
SN

a b a b

α
α

 +  
 +  + +
 

 (3.18) 

where ( )~ 0,1U N , ( )~Z SN α , and U and Z are mutually independent. Then, defining 

1 ,a ρ= −  ,b ρ=  we obtain result in eq.(3.16). Also, defining ,a ρ= 1 ,b ρ= − we 

obtain result in eq.(3.17).□  

To approximate the value of the default barrier K, i.e. the pd-quantile of the asset 

return distribution given in eq.(3.16) and eq.(3.17), we use the Cornish Fisher 

Expansion (see Cornish and Fischer (1960)).   

 For the Skew Student’s t case, the default barrier does complicate the 

computation considerably. This is because the distribution followed by the sum of a 

Gaussian and a Skew Student’s t is not known. Here, we compute the distribution via 

numerical quadrature (for a review on this topic, see Gander and Gautschi (2000) or 

Moler (2004)). Then, one can compute the quantile by minimizing the distance between 

the approximated distribution at a given probability level, ( )kFR and the corresponding 

pd value.  
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 We analyze the case where ( )~ ,Y ST vα and ( )~ 0,1i Nε  to illustrate how this 

approach works. First, rewrite the SFM asi iR C D= + , where C Yρ= ⋅ and 

1i iD ρ ε= − ⋅ . Next, given that ( )~ 0,1, ,Y ST vα , we have ( )~ 0, , ,C ST vρ α  and 

( )~ 0,1iD N ρ−  for all i. Third, since Ri is the sum of two independent random variables, 

then the convolution 
iC Df f∗ of cf and 

iDf is the function given by: 

( ) ( ) ( )
( ) ( )

( ) ( )

( ) ( )

2
1
2 1

1 2

2 1 1

2 1

i i

i

i

i

R i C D i

C D i

C D i

r c

v v

f r f c f d

f c f r c

f c f r c dc

c c v
t T e dc

c

ρα
ρ ρ ρ π ρρ ρ

∞

−∞

 −∞ −   − 
+

−∞

= ∗

= ∗ −

= −

  
    +  =          −     +   

∫

∫

 (3.19) 

Note that once we have integrated eq.(3.19), we got rid of c, and the remaining 

expression for the density is a function of ri. Finally, the distribution function of iR can 

be obtained by integrating eq.(3.19) wrt ri as follows: 

 
( ) [ ] ( )

( ) ( )

Pr
i i

k

R i R i i

k

C D i i

F k R k f r dr

f c f r c dcdr

−∞
∞

−∞ −∞

= ≤ =

= × −

∫

∫ ∫

 (3.20) 

Now, combine the two steps, where  

( )
( ) ( )

2
1

2 1
1 2

2 1 1

2 1

i

i

r ck

R v v i

c c v
F k t T e dcdr

c

ρα
ρ ρ ρ π ρρ ρ

 −∞ −   − 
+

−∞ −∞

  
    +  =          −     +   

∫ ∫  (3.21) 

We use an adaptive Simpson quadrature to numerically evaluate the double integral. 

The Simpson quadrature was computed such that it approximates the integral to within 

an error of 10-8. To compute the pd-quantile, we simply solve the following nonlinear 

problem wrt k: 
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 ( ) 0
iRF k pd− =  (3.22) 

The tolerance level was set equal to 1e-8. All computations were performed in 

Matlab. 

 

5. The Federal Reserve Aggregate Loss Data 

Our data sample consists of quarterly sector aggregate charge-off rates (not seasonally 

adjusted) for all US commercial banks starting from Q1:1985 to Q3:2007. The charge-

off rates are published by the Federal Reserve Board on a quarterly basis. The charge-

off rates for any category of loan are defined as the flow of a bank’s net charge-offs 

(gross charge-offs minus recoveries) during a quarter divided by the average level of its 

loans outstanding in that quarter.8 The charge-off series is reported at three aggregate 

levels. At the top level, we have the ‘Commercial Banking System’ which consists of 

‘Business’, ‘Consumer’, ‘Loans Secured by Real Estate’, ‘Agricultural’ and ‘Leases’. 

The ‘Consumer loans’, in turn, consists of ‘Credit Cards’ and ‘Other Consumer loans’, 

while the ‘Loans Secured by Real Estate’ consists of ‘Mortgages’9  and ‘Commercial 

Real Estate’.10 Since the charge-off rates are net of recoveries which can be from any 

period in the past, charge-off rates can sometime have negative or zero values.11 This 

happens whenever the recovery amount for a quarter is greater than or equal to gross 

charge-off of that quarter. We replace all non-positive charge-off rates by the series 

                                                 
8  As published, these ratios are multiplied by 4x100 to convert to annual percentage rates. 
9  Mortgage loans include loans secured by one-to four-family properties, including home equity lines 

of credit. 
10  Commercial real estate loans include construction and land development loans, loans secured by 

multifamily residences, and loans secured by nonfarm, non-residential real estate. The data for the 
Mortgage and Commercial Real Estate are available from Q1:1991. 

11  There are other problems associated with the use of banks’ charge-off rates.  As Lamb and Perraudin 
(2006) noted, when a new manager takes over a division of a bank, he or she may wish to write off 
delinquent and semi-delinquent loans in order to be able to demonstrate a better performance 
subsequently. Nevertheless, following Lamb and Perraudin’s (2006), we assume that the aggregation 
of many banks charge-offs will help to remove any possible bias due to such actions. 
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minimum positive historical value. Following Lamb and Perraudin (2006), we scaled 

the series by ( )1 LGD . This is because the charge-off rates are published net of 

recoveries. The respective LGD for each loan portfolio was taken from Basel 

Committee on Banking Supervision (2004).   

The time series plots of the ten charge-off rate series are shown in Figure 3. 

Panel A shows the relationship between the scaled charge-off rate for the ‘Banking 

System’ and its main sectors; Panel B and C show the ‘Consumer’ and ‘Real Estate’ 

sectors with their respective sub-components while Panel D shows the non-scaled 

‘Banking System’ and its constituent sectors. In Table 1 we present some descriptive 

statistics for the scaled (by ( )1 LGD ) and non-scaled charge-off rate series. 

Given the scale of the sub-prime financial crisis, some readers might be 

surprised by the relatively low level of the real estate charge-off series. The observed 

levels are relatively low because the sub-prime crisis is largerly related to financial 

instruments (i.e. CDO’s) that do not form part of the bank’s balance sheet. Moreover, it 

is not likely to detect signs of deterioration in the banking system from our historical 

data set since it will take some time before the bad loans are charge-off from the system.   

From the time series plot of the charge-off rate in Figure 3, Panel A, one can 

observe that the ‘Banking System’ series remains stable even though there is a clear 

deterioration in ‘Business’ and ‘Lease’ that starts in 1999. Moreover, the ‘Consumer’ 

series exhibits high levels of charge off compared to all the other series. Since only 

‘Banking System’ and ‘Loans Secured by Real Estate’ share the same time series 

properties but not the others, it suggests that ‘Loans Secured by Real Estate’ must be the 

largest component of ‘Banking System’. It is important to note that the “Banking 
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System” series is the only that was not scaled by the LGD. The unscaled series is 

presented in Panel D.  

Table 1 reports in its first two rows the unconditional mean and standard 

deviations of the unscaled loss rates. This table is useful for comparing the entire 

‘Banking System’ against its subcomponents. The table reveals that ‘Credit Cards’ has 

the highest loss rate at 2.16% which is more than doubles that of the ‘Banking System’ 

(0.84%). By contrast, ‘Mortgages’ exhibit a small loss rate of just 0.15%.  

‘Agricultural’ loans have the highest volatility (1.06%), measured as the 

standard deviation of the series, and this represents approximately three times that of the 

‘Banking System’ (0.36%). This is not too surprising given the high levels of loss rate 

in the ‘Agricultural’ sector at the beginning of the sample period. Volatility of the other 

series, eg ‘Credit Cards’ (1.02%), ‘Commercial Real Estate’ (0.71%), ‘Consumer’ 

(0.58%) and ‘Business’ (0.56%), is relatively high compared with the entire ‘Banking 

System’. ‘Mortgages’ has the lowest volatility (0.07%), much smaller than the volatility 

of the other series. Overall, the statistic suggests that ‘Mortgages’ is less risky, and 

‘Credit Cards’ Loans are most risky. Nevertheless, as remarked by Lamb and Perraudin 

(2006), a more important aspect of the riskiness of a loan type is its asset correlation 

within the sector. This and other sources of risk will be analyzed in the next section. 

Since we estimate the model for the scaled series it is important to study the 

skewness and kurtosis of the scaled series that are reported in the bottom panel of Table 

1. Note that the mean and standard deviation for the scaled ‘Consumer’ series, the 

‘Credit Card loan’ in particular, are much higher than the other series. This is partly 

because the LGD set by Basel II for these sectors is also higher.  
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6. Empirical Results on US Credit Portfolio Losses 

In this section we report the parameter estimates for Vasicek’s (1987) Gaussian 

case for the ten sets of observed charge-off rates. Then, we show the results for the case 

where the common factor follows a Skew Normal or a Skew Student’s t-distribution. 

We assess the fit of these non-Gaussian models to the observed charge-off rates and 

compare them against that of the Gaussian case. Moreover, we also compare the fit of 

the ST against that of the SN, and compare the impact of these two alternative non-

Gaussian specifications on capital charges. Finally, we repeat the analysis for the case 

where the idiosyncratic factor is either SN or ST distributed. 

 

6.1 The Vasicek’s (1987) Gaussian Model 

The estimation results of the base case Vasicek model with Gaussian common 

and idiosyncratic risk factors are presented in Table 2. This model assumes that the pd, 

the probability of default, and ρ, the correlation between the asset returns of any pair of 

firms, are constant for all firms and across all time periods.  

The pd parameter is an estimator of the expected charge-off rate. Therefore, its 

value is close to the mean reported in the bottom panel of Table 1. Credit cards (6.5%), 

Consumer Loans (3.32%), Business Loans (1.88%) and Other Consumer (1.56%) have 

the highest estimated default probabilities.  

The correlation parameter ρ determines the shape of the loss density, and 

consequently, its quantiles. The square root of ρ measures the correlation between the 

asset return and the single common factor. The higher the ρ , the stronger is the sector’s 

exposure to fluctuations in the common factor which is believed to be driven by the 

business cycle. According to Table 2, ρ for Commercial Real Estate Loans (28.37%), 
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Agricultural Loans (16.61%), Loans Secured by Real Estate (11.11%), Business 

(8.31%) and Leases (6.74%) are among the highest suggesting that these sectors are the 

most sensitive to changes in the economic conditions. All these portfolios have a higher 

ρ when compared to that of the ‘Banking System’ (2.07%). Note that ‘Business’ is the 

only portfolio that appears in the high pd and high ρ group, whereas none of the three 

consumption series has high ρ’s. This result is not too surprising given that the 

consumer portfolios typically represented by a large number of small heterogenous 

loans, whereas the ‘Business’ portfolios tends to be dominated by a smaller number of 

large loans. 

Under some regularity conditions (see Greene (2000, pp.127)), the maximum 

likelihood estimator follows an asymptotic Gaussian distribution. The asymptotic 

standard deviation of the ML parameters can be estimated with: (i) the inverse of the 

Hessian; (ii) the outer product of gradients (OPG), which is also known as the Berndt, 

Hall, Hall and Haussman estimator; and (iii) the Sandwich or Quasi-Maximum-

Likelihood Estimator (see White (1982)). All three estimates are computed and reported 

in Table 2 which shows that all parameters estimates are significant at the 1% level 

regardless of the choice of standard error estimator. We also drew 1,000 bootstrap data 

samples for each of the charge-off series. This is because the pd and ρ  parameters are 

constrained to the interval [0,1] and this might cause the asymptotic distribution of the 

estimates not to be Normal. However, as shown by Table 2, the bootstrap estimator is of 

the same magnitude as the asymptotic estimators.   
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 Table 2, Panel B reports the Jarque-Bera normality test12 if the sampling 

distribution of pd and ρ  follows a standard normal distribution. For the case of the pd, 

the Jarque-Bera test rejected normality for the case of ‘Agricultural’ and ‘Commercial 

Real Estate’. Regarding ρ,  the Jarque Bera rejected normality for the case of the 

‘Banking System’, ‘Business’, ‘Credit Cards’ and ‘Mortgages Loans’. We can conclude 

that it is not clear that the MLE will be normally distributed for all series. Given that the 

standard error for the parameter estimates is almost identical between the bootstrap and 

the QMLE estimator, we will report only the QMLE standard errors.  

 

6.2 Non-Gaussian Common Factor  

Tables 3 and 4 report the results, respectively, for the cases where the common factor 

follows a SN and a ST distribution while the idiosyncratic factor follows the standard 

Gaussian distribution. The pd and ρ  estimates for the Gaussian Vasicek base case 

reported in Table 2 are repeated here for ease of comparison. From Table 3 one can see 

that: (i) all pd and ρ parameters are statistically significant at the 1% level; (ii) the pd 

estimates are very similar to the Vasicek’s base case; (iii) the ρ parameters increase with 

respect to the Vasicek’s base case, the increase is greater whenever there is a significant 

shape parameter α ; (iv) the shape parameter is not statistically significant for three 

portfolios, viz. ‘Credit Card’, ‘Other Consumer’ and ‘Commercial Real Estate’, and this 

suggests that the SN specification does not provide a significantly better fit than that of 

the Gaussian case for these three portfolios; (v) negative shape parameters were 

observed for ‘Loans Secured by Real Estate’ (-9.5), ‘Mortgages’ (-7.6), ‘Banking 

System’ (-3.2) and ‘Agricultural Loans’ (-2.9); (vi) the corresponding skewness 
                                                 
12  We also performed Lilliefors normality tests for pd and ρ, but we omitted the results given that these 

were similar to the Jarque Bera. 
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coefficients for the sectors listed in (v), as shown in Table 3, are -0.95, -0.92, -0.70 and -

0.7, respectively. 

 Since the SN distribution contains the normal as a particular case, we can assess 

the fit of Y~SN(α)  against that of Y~N(0,1) with the log-likelihood ratio test (LR). Table 

3 shows that the LR test is significant at the 10% level for 7 out of ten series (‘Banking 

System’, ‘Business’, ‘Consumer’, ‘Loans Secured by Real Estate’, ‘Mortgages’, 

‘Agricultural’ and ‘Leases’). Note that the three series for which the SN does not 

provide a better fit are also the ones that did not have a statistically significant shape 

parameter.  

 Figure 4 plots the distribution of charge-off rates fitted under Vasicek’s 

Gaussian density and that of the SN(α) common factor against the historical observed 

rates. It is clear that the SN(α) provides a marked improvement in the fit especially in 

cases where α  is large.  

 Regarding the ST results shown in Table 4, we provide the following 

observations: (i) the magnitudes of the pd, ρ and α parameters are almost identical to 

those for the SN case, except for ‘Agricultural loans’; (ii) the same three portfolios that 

did not have a significant shape parameter in the SN case remain insignificant under the 

ST (viz. ‘Credit Card’, ‘Other Consumer’, ‘Commercial Real Estate’); (iii) the 

relationship reported in point (iii) of the SN case between α and ρ also holds here for the 

ST ; (iv) the estimated degrees of freedom parameter v is very large in all sectors except 

for the agricultural series.  

 Regarding the fit of the ST, we can clearly see from the LR listed at the bottom 

of Table 4 that: (i) the ST provides a better fit than Vasicek’s Gaussian alternative for 

exactly the same sectors where SN also provided a better fit; (ii) the ST does not provide 
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a statistically better fit than the SN. This result corresponds to the large estimated values 

for v and the fact that the ST collapses to SN as v → ∞ . The only exception to point (ii) 

is the ‘Agricultural Loan’ portfolio, where the estimated v is 7.3033. 

 

6.3 Non-Gaussian Idiosyncratic Noise 

The results in Tables 5 and 6 show the parameter estimates for the case where the 

idiosyncratic factor is SN and ST distributed, respectively, while the common factor is 

normally distributed. The log-likelihood ratio shows that in none of the ten series, the 

non-Gaussian alternative for the idiosyncratic factor provides a better fit than the 

Normal distribution.  

 

6.4 Impact on Capital Charge  

Table 7 compares the capital charge per unit of exposure for the cases where the 

common factor is Gaussian, SN or ST. Note that the capital charges for the SN and the 

ST cases are higher for negative shape parameter values (viz. ‘Commercial Banking 

System’, ‘Loans Secured by Real Estate’, ‘Mortgages’ and ‘Agricultural Loans’), and 

lower for positive shape parameter (viz. ‘Business loan’, Consumer loan’, ‘Credit Card’, 

‘Other Consumer loan’, ‘Commercial Real Estate’ and ‘Lease’). The difference in 

capital charge estimates becomes smaller the closer the shape parameter is to zero. Note 

that the skewness has a large impact on the capital charges. For example, the capital 

requirement for ‘Real Estate’ is more than double under SN than under Gaussian. It is 

clear that higher negative skewness in asset returns leads to higher capital requirements. 

For the case of the SN, the estimated skewness is close to the maximum admissible 

skewness of SN, which corresponds to roughly double the capital requirements. It is 
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important to recall that as the degrees of freedom parameter tends to infinite, then the ST 

converges to the SN. Thus, lower estimates for the degrees of freedom parameter lead to 

higher capital requirements. The only portfolio with a small degrees of freedom 

parameter estimate is ‘Agricultural Loans’. In this particular case, the estimated degrees 

of freedom parameter is 7.3 (see Table 4) and this explains the difference between the 

capital requirement for the ST common factor (0.09) and that of the SN (0.05).  

The last two panels of Table 7 show that the capital requirements under the SN 

and the ST idiosyncratic noise assumption are similar and do not differ significantly 

form those of the Vasicek Gaussian assumption. This result might be due to the fact that 

within each portfolio, the idiosyncratic risk is well diversified, and there is no 

significant exposure to idiosyncratic risk associated with individual exposures. This is 

plausible since our data represent large portfolios. Nevertheless, this result should be 

taken with care. If we were to repeat this exercise on the loan portfolio of small or 

medium sized commercial banks, then the result and the conclusion might change. 

 

7. Concluding Remarks 

Vasicek (1987, 2002) derive a limiting loan portfolio loss distribution which is founded 

on a stochastic asset return process that is driven by a common and an idiosyncratic 

factor both of which are Gaussian. Schönbucher (2001) extends the Vasicek model to 

include cases where the common and the idiosyncratic factors are non-Gaussian. 

Despite its analytical tractability and the rich theoretical insights which have heavily 

influenced Basel II, the literature lacks direct empirical support. 

 In this paper, we have developed a methodology to model empirically the impact 

of non-Gaussian risk factors on credit loss distributions and capital charge. We allow 
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the underlying common and idiosyncratic factors to be Skewed Normal and Skewed 

Student’s t individually. The main interest of using non-Gaussian distributions is to 

control for the effect of the asset return skewness and excess kurtosis on the shape of the 

loss distriburion. The maximum likelihood of our models require further analytical 

results of functions of non-Normal variables which was then performed to official 

charge-off rates published by the Federal Reserve Board for ten U.S. sector charge-off 

rates.  

 The main finding of our paper is that non-Gaussian modelling provides a 

significantly improved fit in the loss density for seven out of the ten portfolios analyzed. 

The most conclusive finding is that the common factor should be best modelled as 

Skewed Normal. Allowing the common factor to be Skewed Student’s t or the 

idiosyncratic factor to be non-Gaussian, does not provide noticeably significant 

improvement to the empirical fit. 

 Our findings confirm that non-Gaussian modelling of the common factor is very 

important, and highlight the inadequacy of the existing Basel II framework. The capital 

requirements obtained by assuming a Gaussian distribution for the asset return could 

over-or underestimate the capital requirements. This degree of over-or underestimation 

depends on the sign and the magnitude of the skew parameter of the Skew Normal. 

Large negative skew parameter value leads to an underestimated capital requirement, 

while large positive skew parameter leads to an overestimation.   

 The non-Gaussian modelling of the idiosyncratic factor did not produce any 

insignificant impact possibly because the ten sectors analyzed here are large portfolios, 

and the idiosyncratic risks might have already been cancelled out. Due diligence should 

be observed when the loan portfolio is small or not well diversified. 
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 Our empirical evidence suggests that Skew Normal is an adequate representation 

of the distributional properties of the latent common factor, since the estimated degrees 

of freedom for the Skew Student’s t-distribution takes very high values, approaching a 

Skew Normal. However, we propose using Skew Student’s t as a modelling choice 

because this distribution adds extra flexibility and has the potential to accommodate 

both heavy tails and skewness, which might prove useful for modelling the losses due to  

the credit crisis when the data becomes available. 
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Table 1. Descriptive statistics for sector charge-off rates (not seasonally adjusted) 
Published by the Federal Reserve Board for the period Q1:1985 to Q3:2007 

 Commercial 
Banking 
System 

Business 
Loans 

Consumer 
Loans  

Credit 
Card 

Other 
Consumer 

Loans  

Loans 
Secured by 
Real Estate 

Commercial 
Real Estate 

Loans† 
Mortgages† 

Agricultural 
Loans 

Lease 

Charge-Off Seriesa           

Mean 0.0084 0.0084 0.0216 0.0423 0.0102 0.0034 0.0044 0.0015 0.0064 0.0049 

Std. Dev. 0.0036 0.0056 0.0058 0.0102 0.0033 0.0034 0.0071 0.0007 0.0106 0.0030 

Scaled Charge-Off Series by (1/LGD)          

LGD (from Basel II) 1b 0.45 0.65 0.65 0.65 0.35 0.35 0.35 0.45 0.45 

Mean  0.0084 0.0186 0.0332 0.0650 0.0156 0.0097 0.0125 0.0042 0.0143 0.0110 

Std. Dev  0.0036 0.0124 0.0089 0.0156 0.0051 0.0096 0.0202 0.0020 0.0236 0.0067 

Skewness 1.0391 0.6689 0.1049 0.4605 0.6348 1.4497 1.9341 1.8200 2.9656 0.7795 

Kurtosis 3.5180 2.6329 2.3442 3.1237 3.2945 4.4513 5.6632 7.2608 12.0876 3.6823 

No of observations 91 91 91 91 91 91 67† 67† 91 91 

(a) The sector charge-off rates (not seasonally adjusted) are defined as the flow of a bank’s net charge-offs (gross charge-offs minus recoveries) during a quarter divided by 

the average level of loans outstanding in that quarter. 

(b) The ‘Commercial Banking System’ comprises ‘Business’, ‘Consumer’, ‘Secured by Real Estate’, ‘Agricultural’ and ‘Lease’ Loans. The share of losses for the five 

sectors is not disclosed by the Fed and Basel II does not provide any value for the LGD of ‘Commercial Banking System’. For simplicity, we assume that the LGD for 

the ‘Commercial Banking System’ is equal to 1.   

(†)  The Fed started reporting the charge-off rate for the ‘Commercial Real Estate’ and ‘Mortgages’ only from Q1:1994.  
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Table 2. Parameter estimates for Vasicek loss distribution of sector charge-off rates (not seasonally adjusted) 
Published by the Federal Reserve Board for the period Q1:1985 to Q3:2007 

 Commercial 
Banking 
System 

Business 
Loans 

Consumer 
Loans  

Credit 
Card 

Other 
Consumer 

Loans  

Loans 
Secured by 
Real Estate 

Commercial 
Real Estate 

Loans† 
Mortgages† 

Agricultural 
Loans 

Lease 

PANEL A            

PD  0.0084 0.0188 0.0332 0.0650 0.0156 0.0096 0.0122 0.0042 0.0128 0.0113 

Inv. Hessian Std Error 0.0004 0.0015 0.0010 0.0016 0.0005 0.0010 0.0027 0.0002 0.0017 0.0009 

QMLE Std Error 0.0004 0.0014 0.0009 0.0016 0.0005 0.0011 0.0028 0.0002 0.0022 0.0007 

OPG Std Error 0.0003 0.0018 0.0011 0.0016 0.0005 0.0010 0.0027 0.0002 0.0014 0.0011 

Bootstrap Std Error 0.0004 0.0013 0.0009 0.0016 0.0005 0.0010 0.0028 0.0002 0.0022 0.0007 

ρ  0.0207 0.0831 0.0155 0.0149 0.0166 0.1111 0.2837 0.0190 0.1661 0.0674 

Inv. Hessian Std Error 0.0030 0.0113 0.0023 0.0022 0.0024 0.0146 0.0351 0.0032 0.0205 0.0093 

QMLE Std Error 0.0025 0.0078 0.0021 0.0020 0.0022 0.0102 0.0342 0.0034 0.0242 0.0104 

OPG Std Error 0.0038 0.0167 0.0026 0.0024 0.0027 0.0225 0.0362 0.0035 0.0209 0.0093 

Bootstrap Std Error 0.0025 0.0079 0.0020 0.0020 0.0022 0.0101 0.0348 0.0033 0.0237 0.0103 

Log-Likelihood 396.3 282.4 299.8 251.8 355.7 335.7 247.6 336.2 309.1 331.3 

PANEL B:            

ρ   JBera Statistic 2.81 3.91 33.09 22.06 7.80 2.07 1.24 17.50 0.26 1.95 
ρ   Critical Value 5.93 5.93 5.93 5.93 5.93 5.93 5.93 5.93 5.93 5.93 
PD JBera Statistic 1.20 1.47 1.57 0.97 2.04 4.26 29.53 5.33 53.27 1.68 
PD Critical Value 5.93 5.93 5.93 5.93 5.93 5.93 5.93 5.93 5.93 5.93 
† The Fed started reporting the charge-off rate for the ‘Commercial Real Estate’ and ‘Mortgages’ only from Q1:1994.                                              
The Jarque-Bera test is a two sided goodness of fit test suitable when a fully-specified null distribution is unknown and its parameters must be estimated. The test statistic is 

( ) ( )( )226 3 4JB n s k= + −  where n is the sample size, s is the sample skewness, and k is the sample kurtosis. For large sample sizes, the test statistic has a chi-square distribution. 

In Matlab, the Jarque-Bera test uses a table of critical values computed using Monte-Carlo simulation for sample sizes less than 2000 and significance levels between  0.001 and 
0.50. Critical values for a test are computed by interpolating into the table, using the analytic chi-square approximation only when extrapolating for larger sample sizes.
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Table 3. Parameter estimates for Vasicek loss distribution where ( )αSNY ~  and ( )1,0~ Njε  

on sector charge-off Rates (not seasonally adjusted) published by the Federal Reserve Board for the period Q1:1985 to Q3:2007 
 Commercial 

Banking 
System 

Business 
Loans 

Consumer 
Loans  

Credit 
Card 

Other 
Consumer 

Loans  

Loans 
Secured by 
Real Estate 

Commercial 
Real Estate 

Loans† 
Mortgages† 

Agricultural 
Loans 

Lease 

Base case results from Table 3: 

PD  0.0084 0.0188 0.0332 0.0650 0.0156 0.0096 0.0122 0.0042 0.0128 0.0113 

ρ  0.0207 0.0831 0.0155 0.0149 0.0166 0.1111 0.2837 0.0190 0.1661 0.0674 

PD 0.0084 0.0191 0.0333 0.0650 0.0156 0.0104 0.0122 0.0042 0.0137 0.0111 
QMLE Std Error 0.0004 0.0012 0.0009 0.0016 0.0005 0.0013 0.0028 0.0002 0.0025 0.0007 

ρ  0.0496 0.2007 0.0377 0.0155 0.0215 0.2722 0.2837 0.0522 0.3074 0.1564 
QMLE Std Error 0.0078 0.0245 0.0067 0.0142 0.0124 0.0251 0.0342 0.0096 0.0464 0.0266 

α -3.2535 4.3759 3.2299 0.2664 0.7597 -9.5118 0.0176 -7.5864 -2.9389 4.1673 
QMLE Std Error 1.0840 1.7034 1.2925 2.9647 1.1602 3.7864 0.0198 3.8098 0.6606 2.3698 

Log-Likelihood 398.8 284.1 301.9 251.8 355.7 341.9 247.6 341.3 315.0 336.0 

Log-Lik Vasicek 396.3 282.4 299.8 251.8 355.7 335.7 247.6 336.2 309.1 331.3 

LR ratio 4.9 3.5 4.2 0.0 0.1 12.4 0.0 10.1 11.8 9.4 

p-value 0.0264* 0.0607+ 0.0404* 0.9812 0.8100 0.0004# 0.9999 0.0015# 0.0006# 0.0021# 

CF Skewness -0.7037 0.8137 0.7005 0.0040 0.0718 -0.9515 0.0000 -0.9279 -0.6573 0.7982 

CF Exc. Kurtosis 0.5475 0.6645 0.5442 0.0005 0.0261 0.8186 0.0000 0.7917 0.4999 0.6477 

Notes: 
† The Fed started reporting the charge-off rate for the ‘Commercial Real Estate’ and ‘Mortgages’ only from Q1:1994. 
CF refers to the Common Factor 
‘#’ indicates cases where the skew normal provides a significant better fit than the normal at the 1% level. 
‘*’ indicates cases where the skew normal provides a significant better fit than the normal at the 5% level. 
‘+’ indicates cases where the skew normal provides a significant better fit than the normal at the 10% level. 
Given that the results by using different estimators are similar, we report only the inference based on the QMLE standard error.    
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Table 4. Parameter estimates for portfolio loss distribution where ( )~ 0,1, ,Y Skew t DFα−  and ( )1,0~ Njε  

on sector charge-off rates (not seasonally adjusted) published by the Federal Reserve Board for the period Q1:1985 to Q3:2007 
 Commercial 

Banking 
System 

Business 
Loans 

Consumer 
Loans  

Credit 
Card 

Other 
Consumer 

Loans  

Loans 
Secured by 
Real Estate 

Commercial 
Real Estate 

Loans† 
Mortgages† 

Agricultural 
Loans 

Lease 

Vasicek Gaussian base case results from Table 2: 

PD  0.0084 0.0188 0.0332 0.0650 0.0156 0.0096 0.0122 0.0042 0.0128 0.0113 

ρ  0.0207 0.0831 0.0155 0.0149 0.0166 0.1111 0.2837 0.0190 0.1661 0.0674 

Results for the Skew Normal common factor from Table 3:        
PD  0.0084 0.0191 0.0333 0.0650 0.0156 0.0104 0.0122 0.0042 0.0137 0.0111 

ρ  0.0496 0.2007 0.0377 0.0155 0.0215 0.2722 0.2837 0.0522 0.3074 0.1564 

α -3.2535 4.3759 3.2299 0.2664 0.7597 -9.5118 0.0176 -7.5864 -2.9389 4.1673 
PD 0.00844 0.0191 0.0333 0.0650 0.0156 0.0104 0.0131 0.0042 0.0145 0.0111 
QMLE Std Error 0.00037 0.0012 0.0009 0.0016 0.0005 0.0013 0.0029 0.0002 0.0027 0.0006 

ρ  0.04957 0.2006 0.0376 0.0150 0.0214 0.2721 0.3547 0.0522 0.2150 0.1496 
QMLE Std Error 0.00774 0.0202 0.0062 0.0020 0.0125 0.0231 0.0828 0.0096 0.1283 0.0268 

α -3.25007 4.3744 3.2278 0.1127 0.7550 -9.5100 -1.0195 -7.5848 -2.0343 4.1390 
QMLE Std Error 1.06705 1.0742 1.1360 0.0339 1.1745 0.5069 0.9314 3.8522 1.2285 2.5810 

DF 1607 3694 2270 2689 1010 4092 33.5455 1995 7.3033 43.6796 

QMLE Std Error 21.8575 5.2737 635.74 14.4795 188.9755 97.9466 0.9967 32.6412 7.7082 0.1940 

Log-Likelihood 398.8 284.1 301.9 251.8 355.7 341.9 247.7 341.3 315.3 336.0 

Log-Lik Vasicek 396.3 282.4 299.8 251.8 355.7 335.7 247.6 336.2 309.1 331.3 

LR ratio 4.9 3.5 4.2 0.0 0.01 12.4 0.2 10.1 12.5 9.5 

p-value 0.0263* 0.0602+ 0.0403* 0.9445 0.8091 0.0004# 0.6979 0.0015# 0.0003# 0.0021# 

Log-Lik Y~SN(α) 398.8 284.1 301.9 251.8 355.7 341.9 247.6 341.3 315.0 336.0 

LR ratio 0.014 0.0106 0.0087 0.0054 0.0137 0.0089 0.1507 0.0063 0.6728 0.0493 

p-value 0.9058 0.9181 0.9259 0.9414 0.9067 0.9247 0.6979 0.9367 0.4121 0.8243 

 Notes 
‘#’, ‘*’ and ‘+’ indicate cases where the skew normal provides a significant better fit than the normal at the 1% level, 5% level and 10% level, respectively. 
† The Fed started reporting the charge-off rate for the ‘Commercial Real Estate’ and ‘Mortgages’ only from Q1:1994. 
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Table 5. Parameter estimates for Vasicek loss distribution where ( )1,0~ NY  and ( )αε SNj ~  

on sector charge-off rates (not seasonally adjusted) published by the Federal Reserve Board for the period Q1:1985 to Q3:2007 
 Commercial 

Banking 
System 

Business 
Loans 

Consumer 
Loans  

Credit 
Card 

Other 
Consumer 

Loans  

Loans 
Secured by 
Real Estate 

Commercial 
Real Estate 

Loans† 
Mortgages† 

Agricultural 
Loans 

Lease 

Base case results from Table 3: 

PD  0.0084 0.0188 0.0332 0.0650 0.0156 0.0096 0.0122 0.0042 0.0128 0.0113 

ρ  0.0207 0.0831 0.0155 0.0149 0.0166 0.1111 0.2837 0.0190 0.1661 0.0674 

PD 0.0084 0.0188 0.0332 0.0650 0.0156 0.0096 0.0124 0.0042 0.0127 0.0113 
QMLE Std Error 0.0004 0.0014 0.0009 0.0016 0.0005 0.0011 0.0027 0.0002 0.0022 0.0007 

ρ  0.0177 0.0826 0.0155 0.0069 0.0139 0.0967 0.2571 0.0190 0.1427 0.0674 
QMLE Std Error 0.0022 0.0077 0.0021 0.0461 0.0019 0.0090 0.0373 0.0034 0.0209 0.0104 

α -1.000 0.095 0.000 1.350 -1.850 -1.148 -0.865 0.014 -1.929 -0.012 
QMLE Std Error 0.0090 0.0360 0.0000 9.2810 0.1780 0.2200 0.5220 0.0040 0.2670 0.0020 

Log-Likelihood 396.4 282.4 299.8 251.8 355.7 335.8 247.7 336.3 309.97 331.3 

Log-Lik Vasicek 396.3 282.4 299.8 251.8 355.7 335.7 247.6 336.2 309.1 331.3 

LR ratio 0.2044 0.0003 0.0000 0.0077 0.0599 0.3312 0.0751 0.0000 1.7522 0.0000 

p-value 0.6512 0.9857 0.9996 0.9299 0.8065 0.5649 0.7840 0.9991 0.1854 0.9988 

 
† The Fed started reporting the charge-off rate for the ‘Commercial Real Estate’ and ‘Mortgages’ only from Q1:1994. 
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Table 6. Parameter estimates for Vasicek loss distribution where ( )1,0~ NY  and ( )DFtSkewj ,,1,0~ αε −  

on sector charge-off rates (not seasonally adjusted) published by the Federal Reserve Board for the period Q1:1985 to Q3:2007 
 Commercial 

Banking 
System 

Business 
Loans 

Consumer 
Loans  

Credit 
Card 

Other 
Consumer 

Loans  

Loans 
Secured by 
Real Estate 

Commercial 
Real Estate 

Loans† 
Mortgages† 

Agricultural 
Loans 

Lease 

Base case results from Table 3: 

PD  0.0084 0.0188 0.0332 0.0650 0.0156 0.0096 0.0122 0.0042 0.0128 0.0113 

ρ  0.0207 0.0831 0.0155 0.0149 0.0166 0.1111 0.2837 0.0190 0.1661 0.0674 

PD 0.0084 0.0188 0.0332 0.0650 0.0156 0.0096 0.0124 0.0042 0.0117 0.0113 
QMLE Std Error 0.0001 0.0001 0.0009 0.0025 0.0009 0.0015 0.0034 0.0001 0.0011 0.0001 

ρ  0.0156 0.0846 0.0167 0.0078 0.0123 0.0969 0.2578 0.0195 0.1589 0.0567 
QMLE Std Error 0.0022 0.0077 0.0021 0.0461 0.0019 0.0090 0.0373 0.0034 0.0209 0.0104 

α -1.011 0.0961 0.0000 1.3708 -1.898 -1.1476 -0.8698 0.01434 -1.9225 -0.0131 
QMLE Std Error 0.0012 0.0261 0.0000 10.2810 0.1780 0.2200 0.5220 0.0040 0.2670 0.0020 

DF 4240 4836 8950 4230 4678 3862 4835 6110 2398 6330 

QMLE Std Error 43.9 10.9 998.3 32.6 201.8 118.3 3.9 64.3 65.3 38.2 

Log-Likelihood 396.4 282.4 299.8 251.8 355.7 335.8 247.7 336.3 309.9 331.3 

Log-Lik Vasicek 396.3 282.4 299.8 251.8 355.7 335.7 247.6 336.2 309.1 331.3 

LR ratio 0.2045 0.0003 0.0000 0.0078 0.0602 0.3322 0.0796 0.0000 1.7755 0.0000 

p-value 0.6511 0.9862 0.9982 0.9296 0.8062 0.5644 0.7778 0.9992 0.1827 0.9984 

† The Fed started reporting the charge-off rate for the ‘Commercial Real Estate’ and ‘Mortgages’ only from Q1:1994. 
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Table 7. Capital charges for Vasicek’s (1987) single factor Gaussian model and the non-Gaussian alternatives 

  
Commercial 

Banking System 
Business 
Loans 

Consumer 
Loans  

Credit 
Card 

Other 
Consumer 

Loans  

Loans 
Secured by 
Real Estate 

Commercial 
Real Estate 

Loans† 
Mortgages† 

Agricultural 
Loans 

Lease 

 LGD 1 0.45 0.65 0.65 0.65 0.35 0.35 0.35 0.45 0.45 

 Sig. 0.9990 0.9990 0.9990 0.9990 0.9990 0.9990 0.9990 0.9990 0.9990 0.9990 
           
EL 0.0084 0.0188 0.0332 0.0650 0.0156 0.0096 0.0124 0.0042 0.0127 0.0113 
UL 0.0247 0.1073 0.0718 0.1260 0.0383 0.0819 0.2376 0.0129 0.1431 0.0628 Vasicek 

CR 0.0162 0.0398 0.0251 0.0396 0.0147 0.0253 0.0789 0.0030 0.0587 0.0232 

shape -3.2535 4.3759 3.2299 0.2664 0.7597 -9.5118 0.0176 -7.5864 -2.9389 4.1673 
EL 0.0084 0.0191 0.0333 0.0650 0.0156 0.0104 0.0122 0.0042 0.0137 0.0111 
UL 0.0329 0.0630 0.0588 0.1259 0.0374 0.1657 0.2376 0.0189 0.2273 0.0354 

SN  

Common 

factor CR 0.0245 0.0198 0.0165 0.0396 0.0142 0.0543 0.0789 0.0051 0.0961 0.0109 

shape -3.2501 4.3744 3.2278 0.1127 0.7550 -9.5100 -1.0195 -7.5848 -2.0343 4.1390 
EL 0.0084 0.0191 0.0333 0.0650 0.0156 0.0104 0.0131 0.0042 0.0145 0.0111 
UL 0.0329 0.0630 0.0588 0.1260 0.0374 0.1656 0.2577 0.0189 0.1263 0.0348 

ST   

Common 

factor CR 0.0245 0.0198 0.0165 0.0396 0.0142 0.0543 0.0856 0.0051 0.0503 0.0107 

shape -1.0000 0.0950 0.0000 1.3500 -1.8500 -1.1480 -0.8650 0.0140 -1.9290 -0.0120 

EL 0.0084 0.0188 0.0332 0.0650 0.0156 0.0096 0.0124 0.0042 0.0127 0.0113 
UL 0.0249 0.1073 0.0718 0.1253 0.0387 0.0857 0.2561 0.0129 0.1527 0.0628 

SN   

Idiosyncratic 

Factor 
CR 0.0165 0.0398 0.0251 0.0392 0.0150 0.0266 0.0853 0.0030 0.0630 0.0232 

shape -1.011 0.0961 0.0000 1.3708 -1.898 -1.1476 -0.8698 0.01434 -1.9225 -0.0131 

EL 0.0084 0.0188 0.0332 0.0650 0.0156 0.0096 0.0124 0.0042 0.0127 0.0113 
UL 0.0249 0.1073 0.0718 0.1253 0.0387 0.0857 0.2561 0.0129 0.1527 0.0628 

ST 

Idiosyncratic 

Factor 
CR 0.0165 0.0398 0.0251 0.0392 0.0150 0.0266 0.0853 0.0030 0.0630 0.0232 

Notes in Table 7: shape=Estimated Shape Parameter; EL=Expected Loss, UL=Unexpected Loss, Cap.Req=Capital Requirements, SN=Skew Normal, ST=Skew Student’s t 

Consistent with Basel II, the confidence level to compute the capital requirements is set to 99.9%. This means that an institution is expected to suffer losses that exceed its 

economic capital once in a thousand years on average.† The Fed started reporting the charge-off rate for the ‘Commercial Real Estate’ and ‘Mortgages’ only from Q1:1994. 
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Figure 1. Skew Normal Density 

PANEL A: Skew Normal density function for positive shape values  PANEL B: Skew Normal density function for negative shape values 
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Table of moments for Panel A                                                                           Table of moments for Panel B            

Random Variable 1V  2V  3V  4V   Random Variable *
1V  *

2V  *
3V  *

4V  

Shape( )α  0 4 10 +∞  Shape ( )α  0 -4 -10 -∞ 
Delta ( )δ  0 0.9701 0.9950 1  Delta ( )δ  0 -0.9701 -0.9950 1 
Expected Value 0 0 0 0  Expected Value 0 0 0 0 
Variance 1 1 1 1  Variance 1 1 1 1 
Std Dev 1 1 1 1  Std Dev 1 1 1 1 
Skewness ( )iV1γ  0 0.7844 0.9556 0.9953  Skewness ( )iV1γ  0 -0.7844 -0.9556 -0.9953 

Excess Kurtosis ( )iV2γ  0 0.6328 0.8232 0.8692  Excess Kurtosis ( )iV2γ  0 0.6328 0.8232 0.8692 
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Figure 2. Skew Normal and Skew Student’s t density function for positive shape values 
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Table of moments for Figure 2 

Random Variable 1P  2P  3P  4P  

Shape( )α  9 9 9 9 
Degrees of freedom( )v   +∞ 3 5 30 

Delta( )δ  0.9939 0.9939 0.9939 0.9939 
Expected Value 0 0 0 0 
Variance 1 1 1 1 
Std Dev 1 1 1 1 
Skewness ( )iP1γ  0.9556 nd 2.5029 1.0803 

Excess Kurtosis ( )iP2γ  0.8232 nd 19.6611 1.3676 

 nd = not defined
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Figure 3. US Federal reserve board quarterly annualized charge-off rates for the period Q1:1985 to Q3:2007 
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Figure 4. Distribution of quarterly charge-off rate under Normal and Skew Normal common factors against the historical distribution 
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Figure 4 (Continued) 
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Figure 4 (Continued) 

 

Vasicek’s loss density assumes that the asset return process is driven by a single Gaussian common factor. Vasicek’s loss density depends on the value of 
two parameters: the probability of default (pd) and the asset correlation (ρ). The values for these parameters for each portfolio are taken from Table 2. 
The Skew Normal common factor modelling is an alternative to Vasicek’s Gaussian proposition that provides a superior fit for seven out of ten analyzed 
portfolios. The non-Gaussian density depends on three parameters: (i) the probability of default (pd); (ii) the asset correlation coefficient (ρ); and (iii) the 
shape parameter (α). The values of these parameters for each portfolio are taken from Table 3.  


